L^p ESTIMATES FOR MAXIMAL FUNCTIONS AND HILBERT TRANSFORMS ALONG FLAT CONVEX CURVES IN R²

BY HASSE CARLSSON¹, MICHAEL CHRIST², ANTONIO CORDOBA, JAVIER DUOANDIKOETXEA, JOSE L. RUBIO DE FRANCIA, JAMES VANCE, STEPHEN WAINGER³, AND DAVID WEINBERG

1. Introduction and statement of results. Let $\Gamma: \mathbf{R} \to \mathbf{R}^n$ be a curve in \mathbb{R}^n with $\Gamma(0) = 0$. For suitable test functions f, let $H_{\Gamma}f(x) =$ $p.v. \int_{-a}^{a} f(x - \Gamma(t))t^{-1} dt$ and $M_{\Gamma}f(x) = \sup_{0 < r \leq 1} |r^{-1} \int_{0}^{r} f(x - \Gamma(t)) dt|$. H_{Γ} and M_{Γ} are called the Hilbert transform and maximal function along Γ , respectively. There has been considerable interest in estimates of the form $||H_{\Gamma}f||_p \leq C||f||_p$ and $||M_{\Gamma}f||_p \leq C||f||_p$ where $||\cdot||_p$ denotes the norm in $L^p(\mathbf{R}^n).$

If Γ has some curvature at the origin, in a weak sense, then the above L^p estimates for H_{Γ} and M_{Γ} have been proved for 1 and <math>1respectively, via techniques developed by Nagel, Riviere, Stein, and Wainger; see the survey [SW] and the references given there. More recently there has been interest in the case when Γ is flat to infinite order at t = 0. In particular if $\Gamma(t) = (t, \gamma(t))$ is a curve in \mathbb{R}^2 for which γ is convex for t > 0 and either even or odd, then a necessary and sufficient condition for H_{Γ} to be bounded on L^2 has been obtained in [**NVWW1**]. The condition for odd γ has also turned out to imply the L^2 boundedness of M_{Γ} [**NVWW2**]. There has also been progress in the study of L^p boundedness for $p \neq 2$ [NW, CNVWW, C].

In the present paper we consider (locally) C^1 curves $\Gamma(t) = (t, \gamma(t))$ in \mathbf{R}^2 defined for $t \ge 0$, with $\gamma'(0) = \gamma(0) = 0$, convex and increasing. To discuss the Hilbert transform $\Gamma(t)$ must be defined for t < 0; we define $\Gamma_e(t) = (t, \gamma(-t))$ and $\Gamma_0(t) = (t, -\gamma(-t))$ for t < 0. Curvature hypotheses are replaced by the much weaker "doubling property"

(1.1)there exists $\lambda > 1$ with $\gamma'(\lambda t) \ge 2\gamma'(t)$ for all t > 0.

We shall prove

THEOREM. Let $\Gamma, \Gamma_e, \Gamma_0$ be as above and satisfy (1.1). Then $||M_{\Gamma}f||_p \leq$ $C||f||_p$ for $1 , and <math>||H_{\Gamma_e}f||_p + ||H_{\Gamma_0}f||_p \le C||f||_p$ for 1 .More precisely, the latter assertion is that the operators H_{Γ} , initially defined only for test functions, extend to bounded operators on L^p .

By combining this theorem with the necessary condition for L^2 boundedness of H_{Γ_e} in [**NVWW1**], we obtain the following

©1986 American Mathematical Society 0273-0979/86 \$1.00 + \$.25 per page

Received by the editors August 26, 1985.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 44A15.

¹Supported by Swedish Natural Science Research Council.

 ²Supported in part by an NSF grant at Princeton University.
³Supported in part by an NSF grant at the University of Wisconsin.