RESEARCH ANNOUNCEMENTS

BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 14, Number 2, April 1986

SOLUTION OF A PROBLEM RAISED BY RUBEL

BY Y. KATZNELSON¹

The following problem was raised by L. Rubel in the 1950s and appears in [2]; my interest in it was rekindled by a query that B. Ghusayni submitted to the Notices of the American Mathematical Society.

PROBLEM. Suppose $E \neq \{0\}$ is a linear subspace of $L^2(\mathbf{R})$ such that

(i) $f \in E \Rightarrow f \in E$ (where f is the Fourier transform of f)

(ii) $g \in L^2(\mathbf{R}), |g| \leq |f|$ a.e. for some $f \in E$ implies that $g \in E$.

Then must $E = L^2(\mathbf{R})$?

We propose to prove more, namely:

THEOREM 1. Let $g, f \in L^2(\mathbf{R}), f \neq 0$. Then there exist functions $\varphi_j \in L^{\infty}(\mathbf{R}), j = 1, \ldots, 5$ such that, denoting by M_j the operator of multiplication by φ_j and by F the Fourier transformation, we have

$$g = M_5 F M_4 F M_3 F M_2 F M_1 \cdot f.$$

NOTATIONS.

$$\begin{split} l^{2^{\star}} &= \{h; h \in L^{2}(\mathbf{R}), h \text{ constant in each } [n, n+1)\},\\ L^{2^{\star}} &= \{H; |H(x)| \leq h(x) \text{ for some } h \in l^{2^{\star}}\},\\ &= \{H; H = \varphi h, \ h \in l^{2^{\star}}, \ \varphi \in L^{\infty}(\mathbf{R})\},\\ &= \{H; \Sigma \sup_{n \leq x < n+1} |H(x)|^{2} = |||H|||^{2} < \infty\}. \end{split}$$

LEMMA 1. If $\psi \in L^2(\mathbf{R})$ and $\operatorname{support}(\psi) \subset [0,1]$, then $\hat{\psi} = F\psi \in L^{2^*}$ and $|||\hat{\psi}||| \leq 2||\psi||$.

LEMMA 2. If $\Psi \in L^2(\mathbf{R})$, then there exists a continuous Φ , $|\Phi(x)| = 1$, such that $(\Phi\Psi)^{\widehat{}} \in L^{2^*}$ and $|||\Phi\Psi^{\widehat{}}||| \leq 2||\Psi||$.

PROOF. Write $\Psi = \Sigma \psi_j$ with $\psi_j = \Psi$ on I_j , where $\{I_j\}$ are intervals of length 1 whose disjoint union covers **R**. Write $\Phi(x) = \exp\{i\lambda_j x\}$ on I_j ,

Received by the editors September 20, 1985.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 42A38.

¹Research supported by NSF grant DMS81-07092.

^{©1986} American Mathematical Society 0273-0979/86 \$1.00 + \$.25 per page