NEW RESULTS FOR COVERING SYSTEMS OF RESIDUE SETS

BY MARC A. BERGER, ALEXANDER FELZENBAUM AND AVIEZRI S. FRAENKEL

We announce some new results about systems of residue sets. A residue set $R \subset \mathbf{Z}$ is an arithmetic progression

$$
R=\{a, a \pm n, a \pm 2 n, \ldots\} .
$$

The positive integer n is referred to as the modulus of R. Following Znám [21] we denote this set by $a(n)$. We need several number-theoretic functions.
$p(m)$-the least prime divisor of a natural number m,
$P(m)$-the greatest prime divisor of m,
$\Lambda(m)$-the greatest divisor of m which is a power of a single prime:

$$
\Lambda(m)=\max \left\{d \in \mathbf{Z}: d \mid m, d=p^{s}, \quad p \text { prime }\right\}
$$

$f(m)=\sum_{j=1}^{l} s_{j}\left(p_{j}-1\right)+1$, where m has the prime factorization $m=$ $p_{1}^{s_{1}} \cdots p_{l}^{s_{l}}$,
$g(m)=\prod_{j=1}^{l}\left(1+x_{j}\right)-\sum_{j=1}^{l} x_{j}-1$, where

$$
x_{j}=\frac{\sum_{k=0}^{s_{j}-1} p_{j}^{k}}{p_{j}^{s_{j}}-\sum_{k=0}^{s_{j}-1} p_{j}^{k}}
$$

and m has the above prime factorization,
$\varphi(m)$-Euler's totient function,
$[x]$-the greatest integer in x.
Recent general surveys on systems of residue sets are Porubský [21] and Znám [26]. Results and problems on residue sets appear also in Erdős and Graham [14] and Guy [16].

1. Disjoint covering systems $[1,2,3,6,9,10]$. These are systems $D=$ $\left(a_{1}\left(n_{1}\right), \ldots, a_{t}\left(n_{t}\right)\right), t>1$, which partition \mathbf{Z}. The multiplicity of a modulus $n=n_{k}$ is the number of sets in D with that modulus. The multiplicity of D is the maximum multiplicity of its moduli.

ThEOREM 1. The multiplicity of any modulus $n=n_{k}$ is at least

$$
\begin{equation*}
m_{1}=\min _{n_{i} \neq n} \Lambda\left(\frac{n}{\left(n, n_{i}\right)}\right) . \tag{1}
\end{equation*}
$$

The multiplicity of D is at least

$$
\begin{equation*}
m_{2}=\left[\frac{P(N) \varphi(N)}{N}\right]+1 \tag{2}
\end{equation*}
$$

Received by the editors June 7, 1985.
1980 Mathematics Subject Classification (1985 Revision). Primary 11A07, 11B75, 11H31, 11B25, 20D15, 20D60, 51A15.

