ASYMPTOTIC COMPLETENESS OF SHORT-RANGE MANY-BODY SYSTEMS ${ }^{1}$

BY I. M. SIGAL AND A. SOFFER ${ }^{2}$

Abstract

We announce a proof of asymptotic completeness for quantum mechanical systems consisting of arbitrary numbers of particles interacting via short-range forces (see conditions (A)-(D) below). A complete proof is given in [SigSof 1]. Previously, there were only partial results in this direction (see reviews and discussions in [Enss, RSIII, Sig]).

Consider an N-body system in the physical space \mathbf{R}^{ν}. The configuration space in the center-of-mass frame is $X=\left\{x \in \mathbf{R}^{\nu N} \mid \sum m_{i} x_{i}=0\right\}$ with the inner product $\langle x, y\rangle=2 \sum m_{i} x_{i} \cdot y_{i}$. Here $m_{i}>0$ are masses of the particles in question. The Schrödinger operator of such a system is

$$
H=-\Delta+V(x) \quad \text { on } L^{2}(X) .
$$

Here Δ is the Laplacian on X and $V(x)=\sum V_{i j}\left(x_{i}-x_{j}\right)$. We assume that the potentials $V_{i j}$ are real and obey (with $\langle x\rangle=\left(1+|x|^{2}\right)^{1 / 2}$)
(A) $V_{i j}(y)$ are Δ_{y}-compact,
(B) $\langle y\rangle^{1+\theta}\left|\nabla V_{i j}(y)\right|$ are Δ_{y}-bounded for some $\theta>0$,
(C) $|y|^{2} \Delta V_{i j}(y)$ are Δ_{y}-bounded,
(D) $\langle y\rangle^{\mu} V_{i j}(y)$ are Δ_{y}-bounded.

Due to condition (A), H is selfadjoint on $D(H)=D(\Delta)$ by the Kato theorem (see e.g. [RSII]). By a short-range system we understand a system obeying (A) and (D) with $\mu>1$. Our main result is

THEOREM 1. Assume an N-body system is described by potentials obeying conditions (A)-(D) with $\mu>1$. Then asymptotic completeness holds for this system.

Conditions (B)-(D) can be relaxed if we exercise more care in our estimation.

Denote by a, b, \ldots, partitions of the set $\{1, \ldots, N\}$ into nonempty disjoint subsets, called clusters. The relation $b \subset a$ means that b is a refinement of a. We assume that partitions have at least two clusters. We define the intercluster interaction for a partition a as

$$
I_{a}=\text { sum of all potentials linking different clusters in } a,
$$

and the Hamiltonian for the system composed of the noninteracting clusters: $H_{a}=H-I_{a}$. Furthermore, H^{a} stands for the Hamiltonian of the same

[^0]
[^0]: Received by the editors August 20, 1985.
 1980 Mathematics Subject Classification (1985 Revision). Primary 81F10; Secondary 81H05, 35P25, 47A40.
 ${ }^{1}$ Research partially supported by NSF.
 ${ }^{\mathbf{2}} \mathrm{A}$. Soffer is a Weizmann Fellow in Mathematics and Physics.

