ASYMPTOTIC COMPLETENESS OF SHORT-RANGE MANY-BODY SYSTEMS¹

BY I. M. SIGAL AND A. SOFFER²

ABSTRACT. We announce a proof of asymptotic completeness for quantum mechanical systems consisting of arbitrary numbers of particles interacting via short-range forces (see conditions (A)-(D) below). A complete proof is given in [SigSof 1]. Previously, there were only partial results in this direction (see reviews and discussions in [Enss, RSIII, Sig]).

Consider an N-body system in the physical space \mathbf{R}^{ν} . The configuration space in the center-of-mass frame is $X = \{x \in \mathbf{R}^{\nu N} | \sum m_i x_i = 0\}$ with the inner product $\langle x, y \rangle = 2 \sum m_i x_i \cdot y_i$. Here $m_i > 0$ are masses of the particles in question. The Schrödinger operator of such a system is

$$H = -\Delta + V(x)$$
 on $L^2(X)$.

Here Δ is the Laplacian on X and $V(x) = \sum V_{ij}(x_i - x_j)$. We assume that the potentials V_{ij} are real and obey (with $\langle x \rangle = (1 + |x|^2)^{1/2}$)

(A) $V_{ij}(y)$ are Δ_y -compact,

(B) $\langle y \rangle^{1+\theta} |\nabla V_{ij}(y)|$ are Δ_y -bounded for some $\theta > 0$,

(C) $|y|^2 \Delta V_{ij}(y)$ are Δ_y -bounded,

(D) $\langle y \rangle^{\mu} V_{ij}(y)$ are Δ_y -bounded.

Due to condition (A), H is selfadjoint on $D(H) = D(\Delta)$ by the Kato theorem (see e.g. [**RSII**]). By a *short-range system* we understand a system obeying (A) and (D) with $\mu > 1$. Our main result is

THEOREM 1. Assume an N-body system is described by potentials obeying conditions (A)-(D) with $\mu > 1$. Then asymptotic completeness holds for this system.

Conditions (B)-(D) can be relaxed if we exercise more care in our estimation.

Denote by a, b, \ldots , partitions of the set $\{1, \ldots, N\}$ into nonempty disjoint subsets, called clusters. The relation $b \subset a$ means that b is a refinement of a. We assume that partitions have at least two clusters. We define the intercluster interaction for a partition a as

 $I_a =$ sum of all potentials linking different clusters in a,

and the Hamiltonian for the system composed of the noninteracting clusters: $H_a = H - I_a$. Furthermore, H^a stands for the Hamiltonian of the same

Received by the editors August 20, 1985.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 81F10; Secondary 81H05, 35P25, 47A40.

¹Research partially supported by NSF.

²A. Soffer is a Weizmann Fellow in Mathematics and Physics.

^{©1986} American Mathematical Society