ASYMPTOTIC ENUMERATION AND A 0-1 LAW FOR m-CLIQUE FREE GRAPHS

BY PH. G. KOLAITIS, H.-J. PRÖMEL AND B. L. ROTHSCHILD

In this note we announce some results about the asymptotic behavior of K_{m}-free graphs. These are the undirected finite graphs which do not contain a complete graph K_{m} with m vertices (an m-clique) as a subgraph. It is obvious that every graph which contains a clique of size $l+1$ is not l-colorable, and hence has chromatic number at least $l+1$. Also it is well known that there are K_{l+1}-free graphs of arbitrarily large chromatic number. In contrast to this we show that "almost-all" K_{l+1}-free graphs are l-colorable, for any $l \geq 2$. More precisely, we establish

THEOREM 1. Let $S_{n}(l)$ be the number of labeled K_{l+1}-free graphs on $\{1,2, \ldots, n\}$ and let $L_{n}(l)$ be the number of labeled l-colorable graphs on $\{1,2, \ldots, n\}$. Then for any polynomial $p(n)$ there is a constant C such that for all n

$$
S_{n}(l) \leq L_{n}(l)\left(1+\frac{C}{p(n)}\right)
$$

and hence

$$
\lim _{n \rightarrow \infty}\left(\frac{L_{n}(l)}{S_{n}(l)}\right)=1
$$

The special case of the above theorem for $l=2$ and $p(n)=n$ was proved by Erdös, Kleitman, Rothschild [1976], who also showed that

$$
\lim _{n \rightarrow \infty}\left(\frac{\log L_{n}(l)}{\log S_{n}(l)}\right)=1 \quad \text { for any } l \geq 2
$$

In addition to the asymptotic enumeration given by Theorem 1, we derive detailed information about the structure of almost all K_{l+1}-free graphs. We use this to prove that the labeled asymptotic probability of any first-order property on the class $S(l)$ of all finite K_{l+1}-free graphs is either 0 or 1 . C. W. Henson (private communication) obtained the first-order 0-1 law for the class $S(2)$ from the asymptotic results about K_{3}-free graphs in Erdös, Kleitman, Rothschild [1976]. The classes $S(l)$ of K_{l+1}-free graphs and $\bar{S}(l)$ of their complementary graphs occur in the Lachlan-Woodrow [1980] characterization of classes of finite undirected graphs having the amalgamation property and closed under induced subgraphs. Together with first-order 0-1 laws already known for other such classes (Fagin [1976], Compton [1984]) we obtain

[^0]
[^0]: Received by the editors May 14, 1985.
 1980 Mathematics Subject Classification. Primary 05C30, 03C13; Secondary 05A15.

