ON AUTOMORPHISMS OF NODAL ENRIQUES SURFACES

BY F. COSSEC AND I. DOLGACHEV

1. Introduction. The purpose of this note is to announce a description of the automorphism group of a generic Enriques surface which contains a nonsingular rational curve (a nodal Enriques surface). The automorphism group of a generic unnodal Enriques surface was recently computed by W. Barth, C. Peters, and V. Nikulin (see $[\mathbf{B}-\mathbf{P}]$). As opposed to the transcendental methods of these authors, we work over any algebraically closed field of characteristic $p \neq 2, 3, 5, 7$, and 17. Our notion of a generic nodal surface is very explicit: We assume that our surface belongs to an open Zariski subset of the 9-dimensional variety parametrizing Reye congruences of lines in \mathbf{P}^3 . It is known that every generic nodal Enriques surface over the complex numbers is isomorphic to a Reye congruence $[\mathbf{Co}]$.

The main geometric ideas of this paper belong to A. Coble: We interpret differently and reconstruct his results on the number of the projective classes of quartic symmetroid surfaces congruent with respect to regular Cremona transformations [Cb 1, Cb 2].

2. Main results. Let Q be the integral quadratic form of rank 10 defined by the Dynkin diagram of type $T_{2,4,6}$

$$\alpha_1 \bullet \cdots \bullet \alpha_9$$

and let W be the corresponding Weyl group generated by the reflections in the vectors α_i (see, for example, [**Do**]). It is known that W contains a unique normal subgroup $\overline{W}(2)$ containing the 2-congruence subgroup W(2) such that $W/\overline{W}(2)$ is isomorphic to the finite group $\operatorname{Sp}(8, \mathbf{F}_2)$ [**Gr**].

THEOREM 1. The automorphism group of a generic nodal Enriques surface is isomorphic to $\overline{W}(2)$.

Recall that this result is very similar to the cited result of Barth-Peters and Nikulin, where the answer is given in terms of the quadratic form defined by the Dynkin diagram of type $T_{2,3,7}$ (isomorphic to the Néron-Severi lattice of an Enriques surface).

THEOREM 2. The number of nonisomorphic nonspecial representations (resp. special) of a generic nodal Enriques as a double plane is equal to 34,780 (resp. 136).

We refer to [AS, Chapter X] for the definition of special and nonspecial double plane representations of Enriques surfaces.

©1985 American Mathematical Society 0273-0979/85 \$1.00 + \$.25 per page

Received by the editors November 27, 1984.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 14J25.