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CLASSIFICATION OF FIRST ORDER THEORIES 
WHICH HAVE A STRUCTURE THEOREM 

BY SAHARON SHELAH1 

We first explain the problem, then the solution and various consequences; 
we then discuss the limits and possible criticisms of our solution. Full proofs 
will appear in [8]. 

Let T denote a countable complete first order theory. A model M of T 
is a set \M\ with interpretations of the predicates and the function symbols 
appearing in T as relations and functions on \M\. 

1. The problem. As we view model theory also as an abstract algebra 
(i.e., dealing with any T, not just a specific one), we want to find a general 
structure theorem for the class of models of T like those of Steinitz (for al­
gebraically closed fields) and Ulm (for countable torsion abelian groups). So, 
ideally, for every model M of T we should be able to find a set of invariants 
which is complete, i.e., determines M up to isomorphism. Such an invariant 
is the isomorphism type, so we should better restrict ourselves to more rea­
sonable ones, and the natural candidates are cardinal invariants or reasonable 
generalizations of them. For a vector space over Q we need one cardinal (the 
dimension); for a vector space over an algebraically closed field, two cardinals; 
for a divisible abelian group G, count ably many cardinals (the dimension of 
{x EG: px = 0} for each prime p and the rank of G/Tor(G)); and for a struc­
ture with countably many one-place relations (i.e. = distinguished subsets), 
we need 2**° cardinals (the cardinality of each Boolean combination). 

We believe the reader will agree that every model (|M|,2£), where E is 
an equivalence relation, has a reasonably complete set of invariants: namely, 
the function saying, for each cardinal À, how many equivalence classes of this 
power occur. Also, if we enrich M by additional relations which relate only 
equivalent members and such that each equivalence class becomes a model 
with a complete set of invariants, then the resulting model will have a complete 
set of invariants. 

However, even if we allow such generalized cardinal invariants, we can­
not have such a structure theory for every T, so we have to reformulate our 
problem. 

l . l . THE STRUCTURE/NONSTRUCTURE PROBLEM. Describe for some 
T's a structure theory and prove for the other theories nonstructure theorems 
showing that no structure theory is possible. 
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