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Square integrable eigenfunctions of the Schrodinger equation decay ex
ponentially. More precisely, let 

i — 1 ' i <j 

be the Schrodinger Hamiltonian for N particles interacting with real pairwise 
potentials Vij{xi — xy), where ViJ(xi — Xj) -> 0 (in some sense) as xt — Xj -* oo 
in R". Separating out the center of mass (H itself has only continuous 
spectrum) one obtains the operator 

H = -A + £ V^x, - xj), 
i<j 

where A denotes the Laplacian on L2(X\ X = {x = (xv... ,xN): Ejii/w,-*,- = 
0}. If <j> is an L2 solution of H<j> = E<j>, and if E lies below the essential 
spectrum of if, then <f> decays exponentially in the sense that there exist 
positive constants A and B for which |</>(x)| < Ae~B^xK The phenomenon of 
exponential decay has long been recognized and was apparent already in 
Schrödinger's solution of the hydrogen atom, but is is only recently that a 
satisfactory mathematical theory for the problem has been developed. 

There is a considerable chemical, physical, and mathematical literature on 
the subject, and we refer the reader to [9,7], and also the notes to Chapter XIII 
of [14], for extensive historical and bibliographic information. Four general 
techniques have emerged. 

(1) Comparison methods (see for example [4,5 and 3]). These methods are 
based on the maximum principle for second order elliptic operators and are 
modelled, to a greater or lesser extent, on the standard proofs of such classical 
theorems of complex analysis as the Hadamard three-line theorem, the Phrag-
men-Lindelöf theorem, and so on. 


