A SYMPLECTIC FIXED POINT THEOREM FOR COMPLEX PROJECTIVE SPACES

BY BARRY FORTUNE AND ALAN WEINSTEIN¹

1. Arnold's conjecture. An automorphism ψ of a symplectic manifold (P, ω) is homologous to the identity if there is a smooth family ψ_t $(t \in [0, 1])$ of automorphisms such that the time-dependent vector field ξ_t defined by $d\psi_t/dt = \xi_t \circ \psi_t$ is globally hamiltonian; i.e. if there is a smooth family H_t of real-valued functions on P such that $\xi_t | \omega = dH_t$. It was conjectured by Arnold [1], as an extension of the Poincaré-Birkhoff annulus theorem [3, 7], that every automorphism of a compact symplectic manifold P, homologous to the identity, has at least as many fixed points as a function on P has critical points.

Arnold's conjecture was proven by Conley and Zehnder [4] for the torus $T^{2n} \approx \mathbf{R}^{2n}/\mathbf{Z}^{2n}$ with its usual symplectic structure. They show that every symplectic automorphism of T^{2n} , homologous to the identity, has at least n+1 fixed points, and at least 2^{2n} if all are nondegenerate. Their method was extended in [8] to prove a version of Arnold's conjecture for arbitrary P under the additional assumption that the hamiltonian vector field ξ_t is sufficiently C^0 small.

In this note we announce a proof of Arnold's conjecture for the complex projective space $\mathbb{C}P^n$ with its standard symplectic structure. We prove that a symplectic diffeomorphism of $\mathbb{C}P^n$, homologous to the identity, has at least n+1 distinct fixed points. (By the Lefschetz fixed point theorem, any continuous map from $\mathbb{C}P^n$ to itself, homotopic to the identity, has at least n+1 fixed points counted with multiplicities.) For n = 1 ($\mathbb{C}P^1 \approx S^2$) the result was already known [1], but with a proof which worked only in this two-dimensional case.

The proof for T^{2n} in [4] made use of a variational principle in which the fixed points of the map were identified with periodic solutions of a timedependent hamiltonian system and then identified with critical points of a functional on the space of contractible loops on T^{2n} . The corresponding functional in the case of $\mathbb{C}P^n$ is multiple valued, and there are other difficulties connected with the curved geometry of $\mathbb{C}P^n$, so we need a new approach. Our trick is to consider the hamiltonian system on $\mathbb{C}P^n$ as the *reduction*, in the sense of [6], of a hamiltonian system on \mathbb{C}^{n+1} and then adapt recently developed methods [2] for finding periodic orbits in \mathbb{C}^{n+1} . This method is similar to that of Conley and Zehnder in that a problem on a compact manifold is lifted to a problem on euclidean space invariant under a group of transformations.

Received by the editors January 26, 1984.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 58F05.

¹Research partially supported by NSF Grant MCS 80-23356.

^{© 1985} American Mathematical Society 0273-0979/85 \$1.00 + \$.25 per page