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LOCAL MODULI 
FOR MEROMORPHIC DIFFERENTIAL EQUATIONS 

BY DONALD G. BABBITT AND V. S. VARADARAJAN 

1. Introduction. This note announces results concerning the parametri-
zation, in the sense of (local) moduli, of the equivalence classes of systems of 
meromorphic differential equations of the form 

(*) du/dz = Au 

near an irregular singular point (assumed to be z = 0). Here u is an n-
component column vector, A is an n x n matrix of meromorphic functions, 
and equivalence of systems denned by matrices A and B means that there is 
a meromorphic invertible n x n matrix x such that 

(**) x[A] d= xAx'1 + {dx/dz)x~l = B 

near z = 0. If Tcgt (resp. 7) is the field of quotients of the ring of convergent 
(resp. formal) power series in z with coefficients in C, (**) defines an action of 
GL(n, 2cgt) on gl(n, ^ g t ) , reflecting the fact that (*) goes over to the system 
dv/dz = Bv under the substitution v = xu; replacing 7cgt by 7 leads to the 
notion of formal equivalence. We note that for any commutative ring R (with 
unit) equipped with a derivation D, (**) defines an action of GL(n, R) on 
gl(n, # ) , with D replacing d/dz; if R is a suitably restricted ring of Laurent 
series in z with coefficients in the ring of convergent power series in d variables 
and D = d/dz, we obtain the notion of equivalence of analytic families of 
systems (*) depending on d parameters, which is basic to the theory of local 
moduli (cf. [BV2]). 

One parametrizes the equivalence classes of systems (*) in two steps. The 
first step is the classification up to formal equivalence, i.e., the description 
of the orbit space GL(n, 7)\%\(n, 7); the second step is to fix a formal class 

H with n c g t = H H &l{n,7cgt) ^ 0> a n d to classify the systems (*) in ficgt 

up to equivalence, i.e., to describe the orbit space GL(n, ^ g t ) \n c g t . The 
description of GL(n, 7)\gi{n, 7); goes back to Hukuhara and Turrittin (see 
[BV1] for extensive references) and is based on the notion of a canonical 
form. The classical method of studying the second question is based on the 
technique of Stokes lines and Stokes multipliers [Bi, J] . Recently this has 
been examined from a more modern, and essentially cohomological, point of 
view, notably by Malgrange [Mal, Ma2], Sibuya [S], and Deligne (cf. [Be]). 
The present note continues this theme by studying the equivalence of analytic 
families of systems (*) and is based in a fundamental way on the theory of 
formal equivalence over general rings developed in [BV2]. 
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