CHARACTERIZING k-DIMENSIONAL UNIVERSAL MENGER COMPACTA

BY MLADEN BESTVINA

The disjoint k-cells property (DD^kP) , isolated by J. W. Cannon [Ca], has played the critical role in the characterization theorems for finite-dimensional manifolds (R. D. Edwards [Ed], F. Quinn [Qu]) and for manifolds modeled on the Hilbert cube (H. Toruńczyk [To]). A metric space X has DD^kP if each pair $f, g: I^k \to X$ of maps of a k-cell into X can be arbitrarily closely approximated by maps with disjoint images.

By Toruńczyk's characterization theorem, a compact AR is homeomorphic to the Hilbert cube Q iff it satisfies DD^kP for k = 0, 1, 2, ...

On the other hand, the Cantor set $C = \mu^0$ is the only 0-dimensional compactum that satisfies DD^0P (i.e. does not have isolated points). From R. D. Anderson's characterization of the universal curve μ^1 [An₂] (the 1-dimensional Peano continuum with no local cut points which does not contain a nonempty open set that can be embedded into the plane), it follows that μ^1 is the only connected (C^0) , locally connected (LC^0) 1-dimensional compactum that satisfies DD^1P . The construction of the universal curve generalizes to give the k-dimensional universal Menger space μ^k : Subdivide $[0,1]^{2k+1} = A_1$ into 3^{2k+1} congruent (2k+1)-cubes, and let A_2 be the union of the cubes adjacent to the k-skeleton of $[0,1]^{2k+1}$. Repeat the construction on each of the remaining cubes to obtain A_3 and, similarly, A_4, A_5, \ldots . Then set $\mu^k = \bigcap_{i=1}^{\infty} A_i$.

THEOREM. If X is a k-dimensional (k-1)-connected (C^{k-1}) , locally (k-1)-connected (LC^{k-1}) compact metric space that satisfies DD^kP , then $X \approx \mu^k$.

COROLLARY. Different constructions of the universal k-dimensional space appearing in the literature (cf. [Mg, Lf, Pa]) yield the same space.

In the proof, a different construction of μ^k is used as a working definition. This construction is more suitable for inductive arguments, since it allows "handlebody decompositions" of μ^k , where each "handle" is a copy of μ^k , the intersection of two "handles" is a copy of μ^{k-1} , the intersection of three "handles" is a copy of μ^{k-2} , etc. This approach leads to a construction of many homeomorphisms $h: \mu^k \to \mu^k$ which are used to develop a decomposition theory for μ^k (via Bing's Shrinking Criterion). The main result here is that a UV^{k-1} -surjection $f: \mu^k \to X$ is approximable by homeomorphisms provided dim X = k and X satisfies DD^kP .

The final part of the proof consists of showing that any C^{k-1} , LC^{k-1} metric compactum admits a UV^{k-1} -surjection $f: \mu^k \to X$ (a resolving map).

Received by the editors May 1, 1984 and, in revised form, May 21, 1984.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 54F20, 57Q99; Secondary 54F45.

^{©1984} American Mathematical Society 0273-0979/84 \$1.00 + \$.25 per page