INTEGRAL REPRESENTAIONS ON HERMITIAN MANIFOLDS: THE $\overline{\partial}$ -NEUMANN SOLUTION OF THE CAUCHY-RIEMANN EQUATIONS¹

BY INGO LIEB² AND R. MICHAEL RANGE

1. Introduction. Let D be a relatively compact domain in a Hermitian manifold X of complex dimension n. The Cauchy-Riemann operator $\overline{\partial}$ extends to a densely defined operator

$$\overline{\partial} \colon L^2_{0,q}(D) \to L^2_{0,q+1}(D), \qquad 0 \le q \le n.$$

The inner product in $L_{0,q}^2(D)$ is given by

$$(f,g)_D = \int_D f \wedge *\overline{g},$$

where * is the Hodge operator defined by the Hermitian structure. If $\overline{\partial}^*$ is the Hilbert space adjoint of $\overline{\partial}$, one defines the complex Laplacian by

$$\Box = \overline{\partial} \, \overline{\partial}^* + \overline{\partial}^* \overline{\partial}.$$

Its significance for complex analysis lies in the fact that if $Nf \in \text{dom} \square$ solves $\square(Nf) = f$ and $\overline{\partial} f = 0$, then $u = \overline{\partial}^* Nf$ is the unique solution of $\overline{\partial} u = f$ which is orthogonal to $\ker \overline{\partial}$. J. J. Kohn has established existence and regularity properties of the solution operator N, giving the solution of minimal norm—the so called $\overline{\partial}$ -Neumann operator—in case D is strictly pseudoconvex [5], and in more general cases as well [6]. The proofs are based on a priori estimates in L^2 -Sobolev spaces, and therefore they do not give any explicit information about the kernels of N or $\overline{\partial}^*N$.

In recent years there has been much interest in finding more explicit and concrete representations of the abstractly defined operators N and $\overline{\partial}^*N$ (see [2, 3, 9, 10, 12]). In [7] we began to study $\overline{\partial}^*N$ by using the calculus of Cauchy-Fantappié kernels in \mathbb{C}^n , in analogy to the work of Kerzman and Stein [4] and Ligocka [8] for the Szegö, respectively, Bergman kernel; in contrast to the scalar case, the incompatibility of the Euclidean metric with the complex geometry of the boundary of D turned out to be a major obstruction in the general case.

In the present paper we overcome this obstruction by generalizing the results in [7] to arbitrary Hermitian manifolds; this enables us to then introduce a special Levi metric—similar to the one in [2]—and to establish the required symmetry properties of the kernels. Our main result gives a new and completely explicit integral representation of the principal part of $\overline{\partial}^* N$ on

Received by the editors May 17, 1983 and, in revised form, June 13, 1984.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 32A25, 32F20, 35N15; Secondary 53C55.

¹Research partially supported by NSF grant MCS 81-02216.

²Partially supported by SFB "Theoretische Mathematik" of the Deutsche Forschungsgemeinschaft.