RESEARCH ANNOUNCEMENTS

BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 11, Number 2, October 1984

TOEPLITZ OPERATORS AND SOLVABLE C*-ALGEBRAS ON HERMITIAN SYMMETRIC SPACES

BY HARALD UPMEIER

Bounded symmetric domains (Cartan domains and exceptional domains) are higher-dimensional generalizations of the open unit disc. In this note we give a structure theory for the C^* -algebra \mathcal{T} generated by all *Toeplitz* operators $T_f(h) := P(fh)$ with continuous symbol function $f \in \mathcal{C}(S)$ on the Shilov boundary S of a bounded symmetric domain D of arbitrary rank r. Here h belongs to the Hardy space $H^2(S)$, and $P: L^2(S) \to H^2(S)$ is the Szegö projection. For domains of rank 1 and tube domains of rank 2, the structure of \mathcal{T} has been determined in [1, 2]. In these cases Toeplitz operators are closely related to pseudodifferential operators. For the open unit disc, \mathcal{T} is the C^* -algebra generated by the unilateral shift.

The structure theory for the general case [12] is based on the fact that D can be realized as the open unit ball of a unique Jordan triple system Z [7, Theorem 4.1]. Denoting the Jordan triple product by $\{uv^*w\}$, a tripotent $e \in Z$ satisfies $\{ee^*e\} = e$. Tripotents generalize the partial isometries of matrix algebras and determine the boundary structure of $D \subset Z$ (cf. [7, Theorem 6.3]). Our principal result ([12]; cf. also [3, 4, 8]) is the following:

THEOREM 1. The Toeplitz C^* -algebra \mathcal{T} associated with a bounded symmetric domain $D \subset Z$ of rank r is solvable of length r, i.e. there exists a chain

 $\{0\} = I_0 \subset I_1 \subset I_2 \subset \cdots \subset I_r \subset I_{r+1} = \mathcal{T}$

of closed two-sided ideals I_k such that for $0 \le k \le r$ there is a C^{*}-algebra isomorphism ("k-symbol")

$$\sigma_k\colon I_{k+1}/I_k\to \mathcal{C}(S_k)\otimes \mathcal{K}(H_k),$$

where S_k denotes the compact manifold of all tripotents $e \in Z$ of rank k and $\mathcal{K}(H_k)$ denotes the C^{*}-algebra of all compact operators on a Hilbert space H_k . Further, dim $(H_k) = \infty$ for k < r and dim $(H_r) = 1$.

1980 Mathematics Subject Classification. Primary 47B35, 47C15; Secondary 32M15, 17C20. © 1984 American Mathematical Society 0273-0979/84 \$1.00 + \$.25 per page

Received by the editors August 22, 1983.