BOOK REVIEWS

6. R. V. Kadison and J. R. Ringrose, Fundamentals of the theory of operatory algebras, Vol. I, Elementary theory, Academic Press, London, 1983.

7. G. K. Pedersen, C*-algebras and their automorphism groups, Academic Press, London, 1979. 8. M. Takesaki, Theory of operator algebras. I, New York, Springer-Verlag, 1979.

THEODORE W. PALMER

BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 10, Number 2, April 1984 © 1984 American Mathematical Society 0273-0979/84 \$1.00 + \$.25 per page

Group extensions, representations, and the Schur multiplicator, by F. Rudolf Beyl and Jürgen Tappe, Lecture Notes in Math., Vol. 958, Springer-Verlag, Berlin, 1982, iv + 278 pp., \$13.50. ISBN 3-5401-1954-X

Schur multipliers arise when one studies central extensions of groups. A central extension is a surjective homomorphism $\varphi: G \to Q$ whose kernel is contained in the center of G. One also calls G itself a central extension of Q. Schur was interested in finding all projective representations of a given finite group Q, i.e. all homomorphisms $\rho: Q \to PGL_n(C)$ with $n \ge 2$. The group $PGL_n(C)$ comes with a central extension $\pi: GL_n(C) \to PGL_n(C)$, where π is the usual map associating with a linear transformation of C^n an automorphism of projective n - 1 space $(n \ge 2)$. The kernel of π is the center of $GL_n(C)$ and may be identified with $C^* = GL_1(C)$. Pulling back π along ρ one gets a central extension $\varphi: G \to Q$ with kernel C* and the situation is that of Diagram 1.

DIAGRAM 1

Thus we have associated with the projective representation ρ of Q the linear representation σ of G. Conversely, if $\varphi: G \to Q$ is any central extension and σ : $G \to \operatorname{GL}_n(\mathbb{C})$ is an irreducible linear representation, one obtains by Schur's Lemma a projective representation ρ of Q such that Diagram 1 commutes. Schur discovered [7, 1902] that there is at least one finite central extension φ : $G \rightarrow Q$ such that σ exists for all ρ (*n* may vary), i.e. such that the projective representations of Q all come from linear representations of G. If one knows G, one may classify its linear representations by character theory. Of course one takes G minimal here. Then Schur calls G a representation group of Q(Darstellungsgruppe). As this term no longer sounds like what it is trying to convey, let us say instead that $\varphi: G \to Q$ is a Schur extension of Q. In general there is no unique Schur extension of Q, but Schur discovered that the kernel M(Q) of φ is unique (up to canonical isomorphism). He baptized it the multiplier of Q (Multiplikator). Unfortunately he also called $H^2(Q, \mathbb{C}^*)$ the multiplier and identified it with M(Q) by observing that the character group Hom(A, C^{*}) of a finite abelian group A (such as M(Q)) is isomorphic with A.