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ON WHITEHEAD'S ALGORITHM 

BY S. M. GERSTEN1 

ABSTRACT. One can decide effectively when two finitely generated 
subgroups of a finitely generated free group F are equivalent under an 
automorphism of F. The subgroup of automorphisms of F mapping a 
given finitely generated subgroup S of F into a conjugate of S is finitely 
presented. 

In two famous articles [9, 10] which appeared in 1936, J. H. C. Whitehead, 
using the theory of three-dimensional handlebodies, proved that one can 
effectively decide when two n-tuples of cyclic words of a finitely generated 
free group F are equivalent by an automorphism of F. The proof of this 
result has been simplified successively [7, 3] and the result itself has been 
immensely influential. Whitehead himself poses the problem of generalizing 
his theorem [10, p. 800]; namely he raises the question of deciding when two 
finitely generated subgroups of F are equivalent by an automorphism of F. 

In 1974 McCool [6] deduced a profound consequence of Whitehead's theo
rem, proving that the stabilizer, in the automorphism group of F, of an n-
tuple of cyclic words is finitely presented. Using graph-theoretic techniques 
we developed in [1] (the results of which were announced in [2]), we have 
succeeded both in settling Whitehead's question and in generalizing McCool's 
results. 

Let A denote the automorphism group of F, and let S denote the set 
of conjugacy classes of finitely generated subgroups of F with its natural A 
action. Let Sn denote the cartesian product of n copies of S with diagonal A 
action. 

THEOREM W. There is an effective procedure for determining when two 
elements of Sn are in the same orbit of the A-action. 

THEOREM M. The stabilizer in A of an element of Sn is finitely presented, 
and a finite presentation can be effectively determined. 

In this note we indicate briefly the ideas that go into the proofs of Theorems 
W and M. Pull details will appear elsewhere. 

We use the theory of graphs defined in [2]. A graph X is a nonempty set 
with involution, denoted X H 4 Ï , together with a retraction t : X —• V(X) of X 
onto the fixed point set V(X) of the involution. Morphisms of graphs preserve 
the involution and the retraction. The set V(X) is called the set of vertices of 
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