RESEARCH ANNOUNCEMENTS

BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 10, Number 2, April 1984

THE HEAT EQUATION AND GEOMETRY OF CR MANIFOLDS ${ }^{1}$

BY RICHARD BEALS, PETER C. GREINER AND NANCY K. STANTON

It is well known that the trace of the heat semigroup for the Laplacian on a compact oriented Riemannian manifold has an asymptotic expansion whose terms are integrals of local geometric invariants; see $[1,3,4]$ and their references. Entirely analogous results are true for the sublaplacian \square_{b} on a compact CR manifold. For simplicity, we state results here only for the case of a definite Levi form.

We suppose that the compact CR manifold M has definite Levi form and has been given a Hermitian metric and an orientation; thus there is an inner product in the space $\mathcal{E}^{p, q}$ of forms of type p, q. Let $\mathcal{H}^{p, q}$ be the completion and fix p. The operator

$$
\bar{\partial}_{b}=\bar{\partial}_{b, q}: \mathcal{E}^{p, q} \rightarrow \mathcal{E}^{p, q+1}
$$

has formal adjoint D_{b} and gives rise to a nonnegative selfadjoint operator $\square_{b}=\square_{b, q}$ on $\mathscr{4}^{p, q}$ which extends the operator $D_{b, q} \bar{\partial}_{b, q}+\bar{\partial}_{b, q-1} D_{b, q-1}$. The operator $\square_{b, q}$ is hypoelliptic for $0<q<n=\frac{1}{2}(\operatorname{dim} M-1)$. In the special case that the metric is a Levi metric, there is a canonical metric connection due to Webster [9] and C. M. Stanton [5].

Theorem 1. For $t>0$ and $0<q<n$, the operator $\exp \left(-t \square_{b, q}\right)$ has a smooth kernel $K_{t, q}$. On the diagonal, $K_{t, q}$ has an asymptotic expansion

$$
\begin{equation*}
\operatorname{tr} K_{t, q}(x, x) \sim t^{-n-1} \sum_{j=0}^{\infty} t^{j} K_{j, q}(x) d V(x), \quad t \rightarrow 0+ \tag{1}
\end{equation*}
$$

where $\operatorname{tr}: \operatorname{Hom} \Lambda^{p, q} \rightarrow \Lambda^{2 n+1}$ is the standard map and $d V(x)$ is the volume element. The functions $K_{j, q}$ are locally computable. If the metric is a Levi metric, then $K_{j, q}$ may be computed by evaluating a universal polynomial in the components of the curvature and torsion of the Webster-Stanton connection and their covariant derivatives calculated in normal coordinates.

[^0]
[^0]: Received by the editors September 21, 1983.
 1980 Mathematics Subject Classification. Primary 58G99.
 ${ }^{1}$ Work supported by grants from the National Science Foundation, the National Research Council of Canada, the Sloan Foundation, and the Max-Planck-Institut.
 © 1984 American Mathematical Society 0273-0979/84 \$1.00 + \$.25 per page

