PROPER HOLOMORPHIC MAPPINGS

BY ERIC BEDFORD¹

Contents

- §1. Structure and Examples
- §2. Analytic Projection Operator
- §3. Boundary Regularity
- §4. Generic Branching
- §5. Factorization
- §6. Mapping into Higher Dimensional Spaces

Introduction. Let us recall that a mapping $F: X \to Y$ is proper if $f^{-1}(K)$ is a compact subset of X whenever $K \subset Y$ is compact. If X and Y are complex spaces, and if $F: X \to Y$ is a proper holomorphic mapping, then $F^{-1}(y_0)$ is a compact analytic subvariety of X for all points $y_0 \in Y$. Proper mappings between complex spaces were studied from the general point of view of complex spaces in the 1950s and early 60s (see Remmert-Stein [78]). Two results from this era are a factorization theorem of Stein [88] and the Remmert Proper Mapping theorem: If $f: X \to Y$ is a proper mapping, and if $S \subset X$ is a subvariety of X, then f(S) is a subvariety of Y.

Here we consider a special case: proper mappings $F: \Omega \to D$ where $\Omega \subset \subset X = \mathbb{C}^n$ and $D \subset \subset Y = \mathbb{C}^N$ are smoothly bounded domains.² The letters Ω and D will always denote domains of \mathbb{C}^n , and a "proper mapping" will always be assumed to be holomorphic. (In many cases the same results are valid in the case where X and Y are Stein manifolds, although we will not emphasize this point.)

It is evident that a mapping $F: \Omega \to D$ is proper if and only if f maps $\partial \Omega$ to ∂D in the following sense:

if $\{z_j\} \subset \Omega$ is a sequence with $\liminf_{j \to \infty} dist(z_j, \partial \Omega) = 0$, then $\liminf_{j \to \infty} dist(f(z_j), \partial D) = 0.$

© 1984 American Mathematical Society 0273-0979/84 \$1.00 + \$.25 per page

This is an expanded version of an hour address given on November 12, 1982 at the American Mathematical Society meeting in Baton Rouge, Louisiana; received by the editors September 9, 1983.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 32H99, 32E35; Secondary 32H10, 32F20, 32F15.

¹ Partially supported by the N.S. F.

² In this case proper mappings are also known as "finite mappings".