PROPER HOLOMORPHIC MAPPINGS

BY ERIC BEDFORD ${ }^{1}$

Contents

§1. Structure and Examples
§2. Analytic Projection Operator
§3. Boundary Regularity
§4. Generic Branching
§5. Factorization
§6. Mapping into Higher Dimensional Spaces

Introduction. Let us recall that a mapping $F: X \rightarrow Y$ is proper if $f^{-1}(K)$ is a compact subset of X whenever $K \subset Y$ is compact. If X and Y are complex spaces, and if $F: X \rightarrow Y$ is a proper holomorphic mapping, then $\left.F^{-(} y_{0}\right)$ is a compact analytic subvariety of X for all points $y_{0} \in Y$. Proper mappings between complex spaces were studied from the general point of view of complex spaces in the 1950s and early 60s (see Remmert-Stein [78]). Two results from this era are a factorization theorem of Stein [88] and the Remmert Proper Mapping theorem: If $f: X \rightarrow Y$ is a proper mapping, and if $S \subset X$ is a subvariety of X, then $f(S)$ is a subvariety of Y.

Here we consider a special case: proper mappings $F: \Omega \rightarrow D$ where $\Omega \subset \subset X$ $=\mathbf{C}^{n}$ and $D \subset \subset Y=\mathbf{C}^{N}$ are smoothly bounded domains. ${ }^{2}$ The letters Ω and D will always denote domains of \mathbf{C}^{n}, and a "proper mapping" will always be assumed to be holomorphic. (In many cases the same results are valid in the case where X and Y are Stein manifolds, although we will not emphasize this point.)

It is evident that a mapping $F: \Omega \rightarrow D$ is proper if and only if f maps $\partial \Omega$ to ∂D in the following sense:

$$
\begin{aligned}
& \text { if }\left\{z_{j}\right\} \subset \Omega \text { is a sequence with } \underset{j \rightarrow \infty}{\lim \operatorname{dist}}\left(z_{j}, \partial \Omega\right)=0 \text {, then } \\
& \underset{j \rightarrow \infty}{\lim \operatorname{dist}}\left(f\left(z_{j}\right), \partial D\right)=0 .
\end{aligned}
$$

[^0]
[^0]: This is an expanded version of an hour address given on November 12, 1982 at the American Mathematical Society meeting in Baton Rouge, Louisiana; received by the editors September 9, 1983.

 1980 Mathematics Subject Classification. Primary 32H99, 32E35; Secondary 32H10, 32F20, 32F15.
 ${ }^{1}$ Partially supported by the N.S. F.
 ${ }^{2}$ In this case proper mappings are also known as "finite mappings".

