A p-ADIC REGULATOR PROBLEM IN ALGEBRAIC K-THEORY AND GROUP COHOMOLOGY

BY J. B. WAGONER ${ }^{1}$

Let \mathcal{O} be the ring of integers in a number field F. Let $\mathfrak{p} \subset \mathcal{O}$ be a prime ideal and $\mathcal{O p}_{p}=\varliminf \mathcal{O} / \mathfrak{p}^{s}$ be the \mathfrak{p}-adic completion of \mathcal{O}. Let

$$
\begin{aligned}
\hat{K}_{n}(O) & =K_{n}(O) \quad \bmod \text { torsion } \\
\hat{K}_{n}^{c}\left(O_{\mathfrak{p}}\right) & =K_{n}^{c}\left(O_{\mathfrak{p}}\right)
\end{aligned} \quad \text { mod torsion }, ~ \$
$$

where $K_{n}(\mathcal{O})$ is the algebraic K-theory of Quillen $[\mathbf{Q}]$ and

$$
K_{n}^{c}\left(O_{\mathfrak{p}}\right)=\varliminf K_{n}\left(O / \mathfrak{p}^{s}\right)
$$

is the "continuous" or " p-adic" algebraic K-theory of O_{p} studied in [W1] by Milgram and the author. Results of [B] and [W1] suggested asking whether

$$
\begin{equation*}
\Phi_{\mathfrak{p}}: \hat{K}_{n}(0) \rightarrow \hat{K}_{n}^{c}\left(O_{\mathfrak{p}}\right) \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
\Phi: \hat{K}_{n}(\mathcal{O}) \rightarrow \bigoplus_{\mathfrak{p} \mid p} \hat{K}_{n}^{c}\left(O_{\mathfrak{p}}\right) \tag{2}
\end{equation*}
$$

is injective, where p is a fixed rational prime and $n>1$ is odd. Observe that each $\Phi_{\mathfrak{p}}$ is clearly injective for $n=1$, because $K_{1}(\mathcal{O})=\mathcal{O}^{*}$ and $K_{1}^{c}\left(O_{\mathfrak{p}}\right)=\mathcal{O}_{\mathfrak{p}}^{*}$. A much harder problem is whether $\Phi \otimes \mathbf{Z}_{p}$ is injective. For $n=1$ and F totally real abelian, injectively of $\Phi \otimes \mathbf{Z}_{p}$ on the subgroup of \mathcal{O}^{*} consisting of those elements congruent to $1 \bmod \mathfrak{p}$ for each $\mathfrak{p} \mid p$ is equivalent to nonvanishing of the p-adic regulator $[\mathrm{Br}, \mathrm{C}]$. As an example of (1) let F be quadratic imaginary. Then is

$$
\begin{equation*}
\Phi_{\mathfrak{p}}: \mathbf{Z} \cong \hat{K}_{3}(0) \rightarrow \hat{K}_{3}^{c}\left(O_{p}\right) \cong \mathbf{Z}_{p} \tag{3}
\end{equation*}
$$

injective when $p=\operatorname{char}(\mathcal{O} / \mathfrak{p})$ is unramified with $\mathcal{O p}_{p} \cong \mathbf{Z}_{p}$? J.-P. Serre asked an equivalent cohomological version of (1) and (2) prior to the circa 1975 K theory formulation. For special case (3) injectivity is equivalent to showing $\Phi_{p} \otimes Q_{p}$ is an isomorphism, which in turn amounts to showing

$$
\begin{equation*}
Q_{p} \cong H_{c}^{3}\left(\operatorname{SL}_{n}\left(O_{p}\right) ; Q_{p}\right) \rightarrow H^{3}\left(\operatorname{SL}_{n}(0) ; Q_{p}\right) \cong Q_{p} \tag{4}
\end{equation*}
$$

is an isomorphism for n large. H_{c}^{3} denotes the continuous cohomology of the p-adic group $\mathrm{SL}_{n}\left(\mathrm{O}_{\mathfrak{p}}\right)$ and H^{3} is the Eilenberg-Mac Lane cohomology of the discrete group $\mathrm{SL}_{n}(\mathcal{O})$. Compare [L]. Numerous examples of (4)

[^0]
[^0]: Received by the editors May 12, 1983.
 1980 Mathematics Subject Classification. Primary 18F25, 12B30; Secondary 12B22, 57T10.
 ${ }^{1}$ Partially supported by NSF Grant MCS80-0258 and DOE Grant DE-AT03-762F0034 Project Agreement DEAS03-79ER10358.

