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The classical calculus of variations (of functions of one variable) appears to 
have culminated in the 1940s with Bliss' book [1] and the work of the Chicago 
school. This classical theory deals with problems typified by the Bolza problem 
of minimizing an expression of the form 

g(a, x(a), b, x(b)) + fbf0(t9 x(t), x'(t)) dt 
Ja 

by a choice of a function x: [a, b] -* Rn that satisfies certain differential 
equations and boundary conditions. This theory has two basic ingredients, 
namely necessary conditions and sufficient conditions for minimum, both of 
an essentially local character. 

The classical theory leaves the existence of a minimizing solution an open 
question. Its necessary conditions may reveal candidates for a local minimum 


