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A unified theory of linear algebraic groups emerged only in the 1940s. 
Before that time, special classes of algebraic groups such as the orthogonal 
groups and the general linear groups had been carefully studied, but these were 
often viewed separately and independently rather than as parts of some greater 
whole. In his Theorie des groupes de Lie [7], Chevalley laid the foundations for 
this more general theory. He developed the subject in the spirit of classical Lie 
theory by associating to each group its Lie algebra and by utilizing a formal 
exponential mapping from the Lie algebra to the group. Unfortunately, this 
process of linearization only worked well when the base field was of character
istic zero. At least one important result, the Lie-Kolchin theorem, did hold for 


