INVARIANTS OF FORMAL GROUP LAW ACTIONS¹

BY ROBERT M. FOSSUM

0. Introduction. In this note, k denotes a field of characteristic p > 0, and the letters T, X and Y are formal indeterminants. Let $F: k[[T]] \rightarrow k[[X,Y]]$ be a (fixed) one-dimensional formal group law [Dieudonné, Hazewinkel, Lazard, Lubin] of height $h \ge 0$. Let V denote a k[[T]] module of finite length. Suppose Ann $(V) = (T^n)$. Let $q = p^e$ denote the least power of p such that $n \le q$. It follows that the symmetric powers $S_r(V)$ over k become k[[T]]-modules, annihilated by T^q , through the formal group law, viz: If $F(T) = X + Y + \sum_{i,j\ge 1} C_{ij}X^iY^j$ and f is in $S_t(V)$ and g is in $S_s(V)$, then

$$T(fg) = fTg + (Tf)g + \sum C_{ij}(T^if)(T^jg)$$

in $S_{t+s}(V)$.

Denote by S(V) the symmetric algebraic on V; so

$$S.(V) := \bigoplus_{r>0} S_r(V).$$

Then S(V) is a k[[T]]-module annihilated by T^q . The main purpose of this note is to announce and outline a proof of the theorem below. Several consequences and examples are included.

THEOREM. Let $S.(V)^F := \{f \in S.(V) : Tf = 0\}$. The set $S.(V)^F$ is a normal noetherian subring of S.(V) of the same Krull dimension. Furthermore, $S.(V)^F$ is factorial.

1. An outline of the proof. To prove the Theorem one can consider two cases: ht F = h = 1 and ht $F = h \neq 1$. In case ht F = 1, the action on S.(V) is equivalent to an action of the cyclic group $\mathbb{Z}/q\mathbb{Z}$ on S.(V). This case is considered, in full generality, in [Fossum, Griffith] and [Almkvist, Fossum].

So consider the case ht $F \neq 1$. It can be shown that there is a fixed power s of p, depending only on ht F, such that $S(V)^s \subset S(V)^F$. Then one can extend the action of T to the field of fractions L of S(V) via

$$T(f/g) = T(fg^{s-1})/g^s.$$

Then one concludes that L^F is a field and

$$S.(V)^F = L^F \cap S.(V),$$

which shows that $S.(V)^F$ is a Krull domain and $S.(V)^F \supset k[S.(V)^s]$, which shows that $S.(V)^F$ is noetherian and S.(V) is integral over $S.(V)^F$. Hence,

© 1983 American Mathematical Society 0273-0979/83 \$1.00 + \$.25 per page

Received by the editors May 2, 1983.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 14L05, 14L30, 13H10, 13F15.

¹This research has been supported by the National Science Foundation.