ON THE LOCAL LANGLANDS CONJECTURE IN PRIME DIMENSION

BY PHILIP KUTZKO¹ AND ALLEN MOY

Let F be a local field of residual characteristics p. Then it is a conjecture of Langlands [JL] that there should be a natural bijection between the set of n-dimensional semisimple representations of the absolute Weil-Deligne group of F and the set of irreducible admissible representations of $GL_n(F)$. Some cases of this conjecture have been established [He, JL, JPS, K, M]. Here we announce further progress toward its verification.

To describe our results, we first note that by work of Bernstein and Zelevinsky [Z], one may restrict one's attention to irreducible representations of the Weil-Deligne group on the one hand and irreducible supercuspidal representations of $\operatorname{GL}_n(F)$ on the other hand. In this context, the conjecture says there should exist a bijection $\sigma \mapsto \pi(\sigma)$ of the set $\mathcal{A}_n^0(F)$ of equivalence classes of continuous, irreducible *n*-dimensional complex representations of W_F , the absolute Weil group of F, with the set $\mathcal{A}^0(\operatorname{GL}_n(F))$ of equivalence classes of admissible irreducible supercuspidal representations of $\operatorname{GL}_n(F)$. This bijection should satisfy the following conditions:

(1.01) $\epsilon(\pi(\sigma), \psi) = \epsilon(\sigma, \psi)$ (see [**D**, **GJ**] for definitions),

(1.02) $\pi(\sigma) \otimes \chi \circ \det = \pi(\sigma \otimes \chi)$ for all quasi-characters χ of F^x ,

(1.03) $\omega_{\pi(\sigma)} = \det \sigma$, where $\omega_{\pi(\sigma)}$ is the central character of $\pi(\sigma)$.

We note that if n = 1, the existence of such a bijection is a restatement of the fundamental theorem of local classified theory [S]; thus when $n \ge 2$, the conjecture under consideration may be thought of as a nonabelian analogue of that theorem.

When $n \ge 2$ the construction of $\pi(\sigma)$ breaks naturally into two steps.

I. Construction of $\pi(\sigma)$ when σ is induced from a representation of smaller dimension. This construction is provided when n = 2 by decomposing the Weil representation of $SL_2(F)$ (see [JL]). When n = 3, it is obtained by global methods [JPS]. When $p \not/n$ then all *n*-dimensional irreducible representations σ of W_F are monomial, and one may use a representation which induces σ to construct a supercuspidal representation $\pi'(\sigma)$ of $GL_n(F)$. This was first done by Howe [Ho], who conjectured that $\pi'(\sigma)$ satisfied (1.01)-(1.03). Recently, Moy [M] showed that a representation $\pi(\sigma)$ satisfying (1.01)-(1.03) may be obtained by a slight modification of Howe's construction and thus verified the Langlands conjecture in case $p \not/ n$ (one needs, however, that char F = 0 in order that the map $\sigma \mapsto \pi(\sigma)$ be bijective).

When $p \mid n$, however, the above approach appears to fail.

Received by the editors June 27, 1983.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 12B25, 20G05; Secondary 22E50, 12B15. ¹Supported in part by NSF Grant #MP575 07481.

^{© 1983} American Mathematical Society 0273-0979/83 \$1.00 + \$.25 per page