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Consider a system of equations of the form 

(i) ƒ(*)=4*) •»(#*)), 
where x = (xi , . . . ,xm) , <j>(x) = (</>i(x),...,0n(x)) is an analytic mapping, and 
A(x) is a px q matrix of analytic functions. Given f(x) = {fi{x),..., fp(x))C°°, 
we seek C°° solutions g(y) = {gi{y),..., gq(y))- There is a necessary condition 
on the Taylor series of ƒ at each point. Special cases are classical: when 
<t>(x) = x we have the division theorem of Malgrange [7, Chapter VI], and 
when A(x) = / , the composition problem first studied by Glaeser [5]. 

We solve the problem in the case that 0(x) and A(x) are algebraic (or Nash), 
using a Hilbert-Samuel stratification associated to (1). Our methods, however, 
go far beyond this case. We present algebraic criteria for solving (1), based on 
a fundamental relationship between two invariants of an analytic morphism 
and an associated "Newton diagram". Hironaka's simple but powerful formal 
division algorithm [3] is exploited systematically. The only results from 
"differential analysis" used are Whitney's extension theorem [7, Chapter I] 
and Lojasiewicz's inequality [7, Chapter IV]. 

Let k = R or C. (Some of our assertions hold for other fields.) Let M, N 
be analytic manifolds (over /ç), and 0: M —• AT an analytic mapping. Let A 
be a p X q matrix of analytic functions on M. 

For each a G M, let 0a (respectively, da) denote the ring of germs of 
analytic functions at a (respectively, the completion of 0a in the Krull topol­
ogy). Let xha be the maximal ideal of Ô0. In the case k — R, let C°°(M) denote 
the algebra of C°° functions on M. There is a Taylor series homomorphism 
ƒ >-» fa from C°°{My onto ôP

a. 
The mapping <f> induces ring homomorphisms 0*: C°°(N) -> C°°(M), 

K' 0<t>{a) -+ 0a, and fc: ô# a) -+ 0a- Let $ : C°°{N)<* -> C°°{My denote the 
module homomorphism over 0* defined by $(g) = A- (gofy. Let <la : ô^ a ) —• 
0a denote the analogous module homomorphism over 0*. 

Let (QC°°(N)*Ydenote the C°°{N)-submodule of C°°{Mf consisting of ele­
ments which formally belong to the image $C°°(N)q of $; i.e., (^C00(AT)«)/S= 
{ƒ € C°°{Mf: for all b G 0(M), there exists Gb G Öb such that fa = 9a{Gb) 
for all a G 0_1(&)}- Evidently, ( f c C ^ i V ^ i s closed in the C°° topology. 
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