THE NEWTON DIAGRAM OF AN ANALYTIC MORPHISM, AND APPLICATIONS TO DIFFERENTIABLE FUNCTIONS

BY EDWARD BIERSTONE¹ AND PIERRE D. MILMAN²

Consider a system of equations of the form

(1)
$$f(x) = A(x) \cdot g(\phi(x)),$$

where $x = (x_1, ..., x_m)$, $\phi(x) = (\phi_1(x), ..., \phi_n(x))$ is an analytic mapping, and A(x) is a $p \times q$ matrix of analytic functions. Given $f(x) = (f_1(x), ..., f_p(x))C^{\infty}$, we seek C^{∞} solutions $g(y) = (g_1(y), ..., g_q(y))$. There is a necessary condition on the Taylor series of f at each point. Special cases are classical: when $\phi(x) \equiv x$ we have the division theorem of Malgrange [7, Chapter VI], and when $A(x) \equiv I$, the composition problem first studied by Glaeser [5].

We solve the problem in the case that $\phi(x)$ and A(x) are algebraic (or Nash), using a Hilbert-Samuel stratification associated to (1). Our methods, however, go far beyond this case. We present algebraic criteria for solving (1), based on a fundamental relationship between two invariants of an analytic morphism and an associated "Newton diagram". Hironaka's simple but powerful formal division algorithm [3] is exploited systematically. The only results from "differential analysis" used are Whitney's extension theorem [7, Chapter I] and Lojasiewicz's inequality [7, Chapter IV].

Let $\underline{k} = \mathbf{R}$ or **C**. (Some of our assertions hold for other fields.) Let M, N be analytic manifolds (over \underline{k}), and $\phi: M \to N$ an analytic mapping. Let A be a $p \times q$ matrix of analytic functions on M.

For each $a \in M$, let \mathcal{O}_a (respectively, $\hat{\mathcal{O}}_a$) denote the ring of germs of analytic functions at a (respectively, the completion of \mathcal{O}_a in the Krull topology). Let $\hat{\mathfrak{m}}_a$ be the maximal ideal of $\hat{\mathcal{O}}_a$. In the case $\underline{k} = \mathbf{R}$, let $C^{\infty}(M)$ denote the algebra of C^{∞} functions on M. There is a Taylor series homomorphism $f \mapsto \hat{f}_a$ from $C^{\infty}(M)^p$ onto $\hat{\mathcal{O}}_a^p$.

The mapping ϕ induces ring homomorphisms $\phi^* \colon C^{\infty}(N) \to C^{\infty}(M)$, $\phi_a^* \colon \mathcal{O}_{\phi(a)} \to \mathcal{O}_a$, and $\hat{\phi}_a^* \colon \hat{\mathcal{O}}_{\phi(a)} \to \hat{\mathcal{O}}_a$. Let $\Phi \colon C^{\infty}(N)^q \to C^{\infty}(M)^p$ denote the module homomorphism over ϕ^* defined by $\Phi(g) = A \cdot (g \circ \phi)$. Let $\hat{\Phi}_a \colon \hat{\mathcal{O}}_{\phi(a)}^q \to \hat{\mathcal{O}}_a^p$ denote the analogous module homomorphism over $\hat{\phi}_a^*$.

Let $(\Phi C^{\infty}(N)^q)$ denote the $C^{\infty}(N)$ -submodule of $C^{\infty}(M)^p$ consisting of elements which formally belong to the image $\Phi C^{\infty}(N)^q$ of Φ ; i.e., $(\Phi C^{\infty}(N)^q)^{\hat{}} = \{f \in C^{\infty}(M)^p$: for all $b \in \phi(M)$, there exists $G_b \in \hat{O}_b$ such that $\hat{f}_a = \hat{\Phi}_a(G_b)$ for all $a \in \phi^{-1}(b)$. Evidently, $(\Phi C^{\infty}(N)^q)^{\hat{}}$ is closed in the C^{∞} topology.

© 1983 American Mathematical Society 0273-0979/83 \$1.00 + \$.25 per page

Received by the editors March 23, 1983.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 32B20, 58C25; Secondary 32C42.

¹Research partially supported by NSERC operating grant A9070.

²Supported by NSERC University Research Fellowship and operating grant U0076.