MILNOR ALGEBRAS AND EQUIVALENCE RELATIONS AMONG HOLOMORPHIC FUNCTIONS ${ }^{1}$

BY STEPHEN S.-T. YAU

Let \mathcal{O}_{n+1} denote the ring of germs at the origin of holomorphic functions $\left(\mathbf{C}^{n+1}, 0\right) \rightarrow \mathbf{C}$. As a ring \mathcal{O}_{n+1} has a unique maximal ideal m, the set of germs of holomorphic functions which vanish at the origin. Let G_{n+1} be the set of germs at the origin of biholomorphisms $\phi:\left(\mathbf{C}^{n+1}, 0\right) \rightarrow\left(\mathbf{C}^{n+1}, 0\right)$. The following are three fundamental equivalent relations in O_{n+1}.

Definition 1. Let f, g be two germs of holomorphic functions $\left(\mathbf{C}^{n+1}, 0\right) \rightarrow$ (C,0).
(i) f is right equivalent to g if there exists a $\phi \in G_{n+1}$ such that $f=g \circ \phi$.
(ii) f is right-left equivalent to g if there exists a $\phi \in G_{n+1}$ and $\psi \in G_{1}$ such that $f=\psi \circ g \circ \phi$.
(iii) f is contact equivalent to g if $(V, 0)$ is biholomorphic equivalent to $(W, 0)$ where $V=\left\{z \in \mathbf{C}^{n+1}: f(z)=0\right\}$ and $W=\left\{z \in \mathbf{C}^{n+1}: g(z)=0\right\}$, i.e., there exists a $\phi \in G_{n+1}$ such that $\phi:(V, 0) \rightarrow(W, 0)$.
One of the natural and fundamental problems in complex analytic geometry is to tell when two germs of holomorphic functions $\left(\mathbf{C}^{n+1}, 0\right) \rightarrow(\mathbf{C}, 0)$ are equivalent in the sense of (i), (ii), or (iii) respectively in Definition 1. To answer the above problem, we need the following notations:

$$
\begin{aligned}
& f^{-1} m_{1}=\left\{\sum_{i \geq 1} a_{i} f^{i}: \sum_{i \geq 1} a_{i} t^{i} \text { is a convergent power series in one variable }\right\}, \\
& \Delta(f)=\text { ideal in } \mathcal{O}_{n+1} \text { generated by } \frac{\partial f}{\partial x_{0}}, \frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}, \\
& a(f)=\{g \in m: \Delta(g) \subseteq \Delta(f)\}, \\
& \underline{R}(f)=\{g \in m: g \text { is right equivalent to } f\}, \\
& \underline{R L}(f)=\{g \in m: g \text { is right-left equivalent to } f\}, \\
& \underline{K}(f)=\{g \in m: g \text { is contact equivalent to } f\}, \\
& \underline{A}(f)=\{g \in m: \text { the moduli algebra of } g \text { is isomorphic to the } \\
&\left.\quad \text { moduli algebra of } f, \text { i.e., } \mathcal{O}_{n+1} /(f, \Delta(f)) \cong \mathcal{O}_{n+1} /(g, \Delta(g))\right\}, \\
& \underline{B}(f)=\left\{g \in m: \mathcal{O}_{n+1} /(f, m \Delta(f)) \cong \mathcal{O}_{n+1} /(g, m \Delta(g))\right\}, \\
& \underline{Q}(f)=\{g \in m: \text { The Milnor algebra of } g \text { is isomorphic } \\
&\left.\quad \text { to Milnor algebra of } f, \text { i.e., } \mathcal{O}_{n+1} / \Delta(f) \cong \mathcal{O}_{n+1} / \Delta(g)\right\} .
\end{aligned}
$$

Received by the editors December 15, 1982.
1980 Mathematics Subject Classification. Primary 32B30, 32C40, 32A05; Secondary 14B05.
${ }^{1}$ Research partially supported by Sloan Fellowship and NSF grant.

