SURGERY AND BORDISM INVARIANTS

BY MICHAEL WEISS

Introduction. The approach used here to relate the two subjects in the title is best explained in terms of three "machines".

Machine (1) is the "L-theory machine", or "surgery machine"; on being fed a discrete group G and homomorphism $w: G \to Z_2$, it produces a spectrum $\mathcal{L}(G, w)$ whose homotopy groups are the surgery obstruction groups (choose your favourite version),

$$\pi_n(\underline{\mathcal{L}}(G,w)) = L_n(G,w) \quad \text{for } n \in \mathbf{Z}.$$

Machine (2) is the "bordism theory machine": on being fed a CW-space Band vector bundle γ on B, it produces a bordism spectrum (or Thom spectrum) $M(B,\gamma)$. The homotopy groups $\pi_n(M(B,\gamma))$ are the bordism groups of closed smooth manifolds N^n equipped with a bundle map from the normal bundle ν_N to γ .

This note will describe a third machine, obtained by welding together the previous two. (The aim is to extend the theory of the "generalized Kervaire invariant": cf. [1, 2].)

Description of Machine (3).

Input. The following input data are required:

— a group G and homomorphism $w: G \to Z_2$, as for Machine (1);

— a CW-space B and bundle γ on B, as for Machine (2);

— a principal G-bundle α on B and an identification j of the two double covers of B arising from these data. (They are the orientation cover associated with γ , and the double cover induced from α via w.)

Output. Machine (3) produces a spectrum $\mathcal{L}^{i}(G, w; B, \gamma; \alpha, j)$ (informally: $\underline{\mathcal{L}}^{:}(B,\gamma)$) and maps of spectra

$$\underline{f}_{:}(G,w) \to \underline{f}^{:}(B,\gamma) \leftarrow M(B,\gamma).$$

Like Machines (1) and (2), Machine (3) is functorial: Given two input strings $(G, w; B, \gamma; \alpha, j)$ and $(G', w'; B', \gamma'; \alpha', j')$, and

— a map $f: B \to B'$ covered by a bundle map $\gamma \to \gamma'$;

— a homomorphism $h: G \to G'$ so that $w' \cdot h = w$;

— an identification of principal G'-bundles on B,

$$h_*(\alpha) \cong f^*(\alpha'),$$

1980 Mathematics Subject Classification. Primary 57R67, 55N22; Secondary 18F25, 18G35.

Received by the editors January 26, 1983.

^{© 1983} American Mathematical Society 0273-0979/83 \$1.00 + \$.25 per page