ENTROPIES AND FACTORIZATIONS OF TOPOLOGICAL MARKOV SHIFTS

BY D. A. LIND¹

1. Markov shift entropies. Let A be a nonnegative integral matrix. A well-known construction [7] associates to A a homeomorphism σ_A of a totally disconnected compact space called a topological Markov shift, or subshift of finite type. Such Markov shifts play a central role in topological dynamics (see [3]), the investigation of Smale's Axiom A diffeomorphisms [6], and coding theory [1]. We announce here a characterization of the possible values for the topological entropy of such Markov shifts, answering a question raised in [2]. Furthermore, these values possess an arithmetic structure which, together with the isomorphism theorem of Adler and Marcus [2], yields an analogue of prime factorization for Markov shifts up to almost topological conjugacy. Details and applications of these results will appear elsewhere.

We shall always assume A to be aperiodic, i.e. some power of A is strictly positive. The topological entropy of σ_A is $\log \lambda$, where λ is the spectral radius of A [5]. Perron-Frobenius theory [4] shows that λ must be an algebraic integer > 1 whose other conjugates have absolute value $< \lambda$. Call an algebraic integer with these properties a Perron number. Our principal result shows these are the only restrictions on Markov shift entropies.

THEOREM 1. If λ is a Perron number, then there is a nonnegative aperiodic integral matrix whose spectral radius is λ .

SKETCH OF PROOF. If λ is Perron, let *B* be the $d \times d$ companion matrix of the minimal polynomial over **Q** of λ . The main difficulty occurs when *B* has no invariant *d*-sided cones, e.g. when tr B < 0. This is overcome by finding invariant surfaces for *B* curved towards the dominant eigendirection.

The real Jordan form for B decomposes \mathbf{R}^d into direct sum of the 1dimensional dominant eigenspace $D = \mathbf{R}w$ for λ , a collection $\mathcal{E} = \{E\}$ of 1- or 2-dimensional eigenspaces with $||Bx|| = \gamma_E ||x|| (x \in E)$ for constants $\gamma_E > 1$, and another collection $\mathcal{F} = \{F\}$ of eigenspaces with $||Bx|| = \gamma_F ||x|| (x \in F)$, $\gamma_F \leq 1$. If G = D, E, or F, let π_G be the B-equivariant projection from \mathbf{R}^d to G. We will use π_D : $\mathbf{R}^d \to \mathbf{R} \cong D$ normalized by $\pi_D w = 1$. Put $\pi_C = I - \pi_D$.

Fix $\theta > 0$, and put

$$K_{\theta} = \{ x \in \mathbf{R}^d : \pi_D x > \theta || \pi_C x || \}, \qquad K_{\theta}(r) = \{ x \in K_{\theta} : \pi_D x \le r \}.$$

© 1983 American Mathematical Society 0273-0979/83 \$1.00 + \$.25 per page

Received by the editors November 16, 1982.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 58F15, 28D20; Secondary 58F11, 58F19. ¹Supported in part by NSF Grant MCS 8201542.