ENTROPIES AND FACTORIZATIONS OF TOPOLOGICAL MARKOV SHIFTS

BY D. A. LIND 1

1. Markov shift entropies. Let A be a nonnegative integral matrix. A well-known construction [7] associates to A a homeomorphism σ_{A} of a totally disconnected compact space called a topological Markov shift, or subshift of finite type. Such Markov shifts play a central role in topological dynamics (see [3]), the investigation of Smale's Axiom A diffeomorphisms [6], and coding theory [1]. We announce here a characterization of the possible values for the topological entropy of such Markov shifts, answering a question raised in [2]. Furthermore, these values possess an arithmetic structure which, together with the isomorphism theorem of Adler and Marcus [2], yields an analogue of prime factorization for Markov shifts up to almost topological conjugacy. Details and applications of these results will appear elsewhere.

We shall always assume A to be aperiodic, i.e. some power of A is strictly positive. The topological entropy of σ_{A} is $\log \lambda$, where λ is the spectral radius of A [5]. Perron-Frobenius theory [4] shows that λ must be an algebraic integer >1 whose other conjugates have absolute value $<\lambda$. Call an algebraic integer with these properties a Perron number. Our principal result shows these are the only restrictions on Markov shift entropies.

Theorem 1. If λ is a Perron number, then there is a nonnegative aperiodic integral matrix whose spectral radius is λ.

Sketch of proof. If λ is Perron, let B be the $d \times d$ companion matrix of the minimal polynomial over \mathbf{Q} of λ. The main difficulty occurs when B has no invariant d-sided cones, e.g. when $\operatorname{tr} B<0$. This is overcome by finding invariant surfaces for B curved towards the dominant eigendirection.

The real Jordan form for B decomposes \mathbf{R}^{d} into direct sum of the 1dimensional dominant eigenspace $D=\mathbf{R} w$ for λ, a collection $\mathcal{E}=\{E\}$ of 1 - or 2-dimensional eigenspaces with $\|B x\|=\gamma_{E}\|x\|(x \in E)$ for constants $\gamma_{E}>1$, and another collection $\mathcal{F}=\{F\}$ of eigenspaces with $\|B x\|=\gamma_{F}\|x\|(x \in F)$, $\gamma_{F} \leq 1$. If $G=D, E$, or F, let π_{G} be the B-equivariant projection from \mathbf{R}^{d} to G. We will use $\pi_{D}: \mathbf{R}^{d} \rightarrow \mathbf{R} \cong D$ normalized by $\pi_{D} w=1$. Put $\pi_{C}=I-\pi_{D}$.

Fix $\theta>0$, and put

$$
K_{\theta}=\left\{x \in \mathbf{R}^{d}: \pi_{D} x>\theta\left\|\pi_{C} x\right\|\right\}, \quad K_{\theta}(r)=\left\{x \in K_{\theta}: \pi_{D} x \leq r\right\} .
$$

Received by the editors November 16, 1982.
1980 Mathematics Subject Classification. Primary 58F15, 28D20; Secondary 58F11, 58 F19.
${ }^{1}$ Supported in part by NSF Grant MCS 8201542.

