a GENERALIZATION OF TWO CLASSICAL CONVERGENCE TESTS FOR FOURIER SERIES, AND SOME NEW BANACH SPACES OF FUNCTIONS

BY B. KORENBLUM ${ }^{1}$

Abstract

The norms of these spaces fill the gap between the uniform and the variation norms. Their duals are described in terms of generalized variation. One application of these spaces is a new convergence test for Fourier series which includes both the Dirichlet-Jordan and the Dini-Lipschitz tests [1].

1. The κ-entropy. $\kappa(s)$ will always denote a nondecreasing concave function on $[0,1]$ such that $\kappa(0)=0, \kappa(1)=1$; this implies that $\kappa(s)$ is continuous except, perhaps, at $s=0$.

Definition. Let $E=\left\{x_{1}<x_{2}<\cdots<x_{n}\right\} \subset[a, b]$ be a finite nonempty set. The following quantity will be called the κ-entropy of E (relative to $[a, b]$):

$$
\begin{equation*}
\kappa(E)=\kappa(E ;[a, b])=\sum_{1}^{n+1} \kappa\left(\left(x_{j}-x_{j-1}\right) /(b-a)\right) \tag{1}
\end{equation*}
$$

where $x_{0}=a, x_{n+1}=b$. For an arbitrary closed set $F \subset[a, b]$ we set

$$
\begin{equation*}
\kappa(F)=\kappa(F ;[a, b])=\sup \{\kappa(E): E \subset F \text { finite }\} \tag{2}
\end{equation*}
$$

Finally, we set $\kappa(\varnothing)=0$.
The following properties of the κ-entropy are easily derived.
(i) $F_{1} \subset F_{2}$ implies $\kappa\left(F_{1}\right) \leq \kappa\left(F_{2}\right)$.
(ii) $\kappa\left(F_{1} \cup F_{2}\right) \leq \kappa\left(F_{1}\right)+\kappa\left(F_{2}\right)$.
(iii) If card $E=n$, then $\kappa(E) \leq(n+1) \kappa(1 /(n+1))$; the estimate is sharp and attained for $x_{1}-x_{0}=x_{2}-x_{1}=\cdots=x_{n+1}-x_{n}$.
2. Examples of κ-entropy.
(a) $\kappa(s)=s$. We have in this case $\kappa(F)=1(F \neq \varnothing), \kappa(\varnothing)=0$.
(b) $\kappa(s)=1(0<s \leq 1)$. Here we have

$$
\kappa(F)=\operatorname{card}(F \cup\{a, b\})-1 \quad(F \neq \varnothing) .
$$

(c) $\kappa(s)=s(1-\log s)$. The corresponding entropy will be denoted by $\kappa_{s}(F)$ and called the Shannon entropy of F (relative to $[a, b]$).
(d) $\kappa(s)=s^{\alpha}$. Here $\kappa(F)=\kappa_{l, \alpha}(F)$ is the Lipschitz entropy $(0<\alpha<1)$.
(e) $\kappa(s)=\left(1-\frac{1}{2} \log s\right)^{-1} ; \kappa(F)=\kappa_{d}(F)$ is the Dini entropy.

[^0]
[^0]: Received by the editors March 2, 1983.
 1980 Mathematics Subject Classification. Primary 42A20, 46E15.
 ${ }^{1}$ Supported by NSF grant MCS82-01460

