A GENERALIZATION OF TWO CLASSICAL CONVERGENCE TESTS FOR FOURIER SERIES, AND SOME NEW BANACH SPACES OF FUNCTIONS

BY B. KORENBLUM¹

ABSTRACT. The norms of these spaces fill the gap between the uniform and the variation norms. Their duals are described in terms of generalized variation. One application of these spaces is a new convergence test for Fourier series which includes both the Dirichlet-Jordan and the Dini-Lipschitz tests [1].

1. The κ -entropy. $\kappa(s)$ will always denote a nondecreasing concave function on [0,1] such that $\kappa(0) = 0$, $\kappa(1) = 1$; this implies that $\kappa(s)$ is continuous except, perhaps, at s = 0.

DEFINITION. Let $E = \{x_1 < x_2 < \cdots < x_n\} \subset [a, b]$ be a finite nonempty set. The following quantity will be called the κ -entropy of E (relative to [a, b]):

(1)
$$\kappa(E) = \kappa(E; [a, b]) = \sum_{1}^{n+1} \kappa((x_j - x_{j-1})/(b-a)),$$

where $x_0 = a$, $x_{n+1} = b$. For an arbitrary closed set $F \subset [a, b]$ we set

(2)
$$\kappa(F) = \kappa(F; [a, b]) = \sup\{\kappa(E) \colon E \subset F \text{ finite}\}$$

Finally, we set $\kappa(\emptyset) = 0$.

The following properties of the κ -entropy are easily derived.

- (i) $F_1 \subset F_2$ implies $\kappa(F_1) \leq \kappa(F_2)$.
- (ii) $\kappa(F_1 \cup F_2) \leq \kappa(F_1) + \kappa(F_2)$.
- (iii) If card E = n, then $\kappa(E) \le (n+1)\kappa(1/(n+1))$; the estimate is sharp and attained for $x_1 x_0 = x_2 x_1 = \cdots = x_{n+1} x_n$.

2. Examples of κ -entropy.

- (a) $\kappa(s) = s$. We have in this case $\kappa(F) = 1$ ($F \neq \emptyset$), $\kappa(\emptyset) = 0$.
- (b) $\kappa(s) = 1 \ (0 < s \le 1)$. Here we have

$$\kappa(F) = \operatorname{card}(F \cup \{a, b\}) - 1 \qquad (F \neq \emptyset).$$

- (c) $\kappa(s) = s(1-\log s)$. The corresponding entropy will be denoted by $\kappa_s(F)$ and called the Shannon entropy of F (relative to [a, b]).
- (d) $\kappa(s) = s^{\alpha}$. Here $\kappa(F) = \kappa_{l,\alpha}(F)$ is the Lipschitz entropy $(0 < \alpha < 1)$.
- (e) $\kappa(s) = (1 \frac{1}{2}\log s)^{-1}$; $\kappa(F) = \kappa_d(F)$ is the Dini entropy.

© 1983 American Mathematical Society 0273-0979/83 \$1.00 + \$.25 per page

Received by the editors March 2, 1983.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 42A20, 46E15.

¹Supported by NSF grant MCS82-01460