SOME PROBLEMS IN POTENTIAL THEORY AND THE NOTION OF HARMONIC ENTROPY

BY BORIS KORENBLUM ${ }^{1}$

Abstract

Blaschke regions are studied for certain classes of subharmonic functions in connection with the notion of harmonic entropy. A complete description of Riesz measures for some of these classes is obtained. A new analytic inequality is established.

1. Definitions, notations and two basic problems. $k(r)(0 \leq r<1)$ will always denote a continuous nonnegative function such that $k(|z|)$ is subharmonic in the open unit disc \mathbf{D} (or, equivalently, such that $k(r)$ and $r k^{\prime}(r)$ are nondecreasing).

Definition 1. Let $\mathcal{M} \subset \mathbf{D}$ be a given set, and let $\mathcal{H}_{\langle k\rangle}(\mathcal{M})$ be the set of all nonnegative harmonic functions $u(z)$ in \mathbf{D} such that $u(z) \geq k(|z|)$ on \mathcal{M}. The following quantity will be called the harmonic k-entropy of \mathcal{M} :

$$
\begin{equation*}
\mathcal{E}(\mathcal{M} ; k)=\min \left\{u(0): u \in \mathscr{H}_{\langle k\rangle}(\mathcal{M})\right\} .^{2} \tag{1.1}
\end{equation*}
$$

If $\mathscr{H}_{\langle k\rangle}(\mathcal{M})$ is empty, we set $\mathcal{E}(\mathcal{M} ; k)=+\infty$.
DEFINITION 2. $S \mathcal{H}^{\langle k\rangle}$ will denote the class of subharmonic functions $u(z)$ in \mathbf{D} such that

$$
\begin{equation*}
u(z) \leq C_{u} k(|z|) \quad(z \in \mathbf{D}) \tag{1.2}
\end{equation*}
$$

where C_{u} is some constant (depending on u).
DEFINITION 3. $A^{\langle k\rangle}$ will denote the class of analytic functions $f(z)$ in \mathbf{D} such that $\log |f(z)| \in S H^{\langle k\rangle}$.

DEFINITION 4. A region $G \subset \mathbf{D}$ is called a k-Blaschke region if either of two equivalent ${ }^{3}$ conditions holds:
(a) for every $u \in S \mathcal{H}^{\langle k\rangle}$

$$
\begin{equation*}
b(G ; d \mu)=\int_{G}(1-|z|) d \mu(z)<\infty \tag{1.3}
\end{equation*}
$$

where $d \mu=\Delta u$ is the Riesz measure (i.e. generalized Laplacian) of u;
(b) for every $f \in \mathfrak{A}^{\langle k\rangle}$

$$
\sum_{z_{\nu} \in G}\left(1-\left|z_{\nu}\right|\right)<\infty
$$

where $\left\{z_{\nu}\right\}$ is the zero set of f.

[^0]
[^0]: Received by the editors January 28, 1982 and, in revised form, September 3, 1982.
 1980 Mathematics Subject Classification. Primary 31A05, 30C15; Secondary 26D15.
 ${ }^{1}$ Supported by NSF grant MCS80-03413.
 ${ }^{2}$ The use of that term, borrowed from Information Theory, is suggested by this interpretation: if $u(z)$ is conceived as a "signal" of strength $u(0)$ and $k(|z|)$ as the "noise", then $\mathcal{E}(\mathcal{M} ; k)$ is the strength of the weakest signal that overcomes the noise on \mathcal{M}.
 ${ }^{3}$ The equivalence of (a) and (b) is easily proved.

