SOME PROBLEMS IN POTENTIAL THEORY AND THE NOTION OF HARMONIC ENTROPY

BY BORIS KORENBLUM¹

ABSTRACT. Blaschke regions are studied for certain classes of subharmonic functions in connection with the notion of harmonic entropy. A complete description of Riesz measures for some of these classes is obtained. A new analytic inequality is established.

1. Definitions, notations and two basic problems. k(r) $(0 \le r < 1)$ will always denote a continuous nonnegative function such that k(|z|) is subharmonic in the open unit disc **D** (or, equivalently, such that k(r) and rk'(r) are nondecreasing).

DEFINITION 1. Let $\mathcal{M} \subset \mathbf{D}$ be a given set, and let $\mathcal{H}_{(k)}(\mathcal{M})$ be the set of all nonnegative harmonic functions u(z) in \mathbf{D} such that $u(z) \ge k(|z|)$ on \mathcal{M} . The following quantity will be called the harmonic k-entropy of \mathcal{M} :

(1.1)
$$\mathcal{E}(\mathcal{M};k) = \min\{u(0): u \in \mathcal{H}_{(k)}(\mathcal{M})\}.^2$$

If $\mathcal{H}_{\langle k \rangle}(\mathcal{M})$ is empty, we set $\mathcal{E}(\mathcal{M};k) = +\infty$.

DEFINITION 2. $S\mathcal{H}^{\langle k \rangle}$ will denote the class of subharmonic functions u(z) in **D** such that

(1.2)
$$u(z) \le C_u k(|z|) \quad (z \in \mathbf{D}),$$

where C_u is some constant (depending on u).

DEFINITION 3. $\mathcal{A}^{\langle k \rangle}$ will denote the class of analytic functions f(z) in **D** such that $\log |f(z)| \in S \mathcal{H}^{\langle k \rangle}$.

DEFINITION 4. A region $G \subset \mathbf{D}$ is called a k-Blaschke region if either of two equivalent³ conditions holds:

(a) for every $u \in S \mathcal{H}^{\langle k \rangle}$

(1.3)
$$b(G;d\mu) = \int_G (1-|z|) \, d\mu(z) < \infty,$$

where $d\mu = \Delta u$ is the Riesz measure (i.e. generalized Laplacian) of u; (b) for every $f \in \mathcal{A}^{\langle k \rangle}$

(1.3')
$$\sum_{z_{\nu}\in G} (1-|z_{\nu}|) < \infty,$$

where $\{z_{\nu}\}$ is the zero set of f.

© 1983 American Mathematical Society 0273-0979/83/0000-1427/\$01.75

Received by the editors January 28, 1982 and, in revised form, September 3, 1982. 1980 Mathematics Subject Classification. Primary 31A05, 30C15; Secondary 26D15.

¹Supported by NSF grant MCS80-03413.

²The use of that term, borrowed from Information Theory, is suggested by this interpretation: if u(z) is conceived as a "signal" of strength u(0) and k(|z|) as the "noise", then $\mathcal{E}(\mathcal{M};k)$ is the strength of the weakest signal that overcomes the noise on \mathcal{M} .

³The equivalence of (a) and (b) is easily proved.