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SOME PROBLEMS IN POTENTIAL THEORY 
AND THE NOTION OF HARMONIC ENTROPY 

BY BORIS KORENBLUM1 

ABSTRACT. Blaschke regions are studied for certain classes of subhar-
monic functions in connection with the notion of harmonic entropy. 
A complete description of Riesz measures for some of these classes is 
obtained. A new analytic inequality is established. 

1. Definitions, notations and two basic problems. k(r) (0 < r < 1) will 
always denote a continuous nonnegative function such that k(\z\) is subhar-
monic in the open unit disc D (or, equivalently, such that k(r) and fk'(r) are 
nondecreasing). 

D E F I N I T I O N 1. Let M C D be a given set, and let M(k)(M) be the set of all 
nonnegative harmonic functions u(z) in D such that u{z) > k(\z\) on At. The 
following quantity will be called the harmonic k-entropy of M: 

(1.1) £{M;k) = mm{u{0): ueX{k){M)}.2 

If #(fc)(M) is empty, we set £(M; k) = +oo. 
DEFINITION 2. SK^ will denote the class of subharmonic functions u(z) 

in D such that 
(1.2) u{z)<Cuk{\z\) {zeV), 

where Cu is some constant (depending on u). 
D E F I N I T I O N 3. A^ will denote the class of analytic functions f(z) in D 

such that log |/(s)| €$#<*>. 
DEFINITION 4. A region G C D is called a /c-Blaschke region if either of 

two equivalent3 conditions holds: 
(a) for every ue SM^ 

(1.3) b{G;dv) = [ (1 - \z\)d^i{z) < oo, 

where d[i — Au is the Riesz measure (i.e. generalized Laplacian) of u; 
(b) for every ƒ G A^k) 

(1.3') E(1-M<00' 
zueG 

where {zu} is the zero set of ƒ. 
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2 The use of that term, borrowed from Information Theory, is suggested by this inter

pretation: if u(z) is conceived as a "signal" of strength u(0) and A;(|̂ |) as the "noise", then 
£(M;k) is the strength of the weakest signal that overcomes the noise on M. 

3 The equivalence of (a) and (b) is easily proved. 
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