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REAL AND COMPLEX CHEBYSHEV APPROXIMATION 
ON THE UNIT DISK AND INTERVAL 

BY MARTIN H. GUTKNECHT AND LLOYD N. TREFETHEN1 

We announce the resolution of a number of outstanding questions regarding 
real and complex Chebyshev (supremum norm) approximation by rational 
functions on a disk and on an interval. The proofs consist mainly of symmetry 
arguments applied to explicit examples. The most important results: complex 
rational best approximations on a disk are in general not unique; real functions 
on an interval can in general be approximated arbitrarily much better by 
complex rational functions than by real ones. Details will appear in [3, 8]. 

1. Notation. Define A = {z: \z\< 1}, A& = {ƒ : continuous on A, analytic 
in the interior}, ||ƒ ||A = sup{| f(z)\ : z G A}. Let m > 0, n > 1 be integers (all 
questions considered below become trivial for n — 0), and let jRmn be the space 
of complex rational functions of type (ra, n). Define Ar

A = {ƒ G AA : ƒ {z) = 
W)}> Kan = {re Rmn : r(z) = KÏ)}, and for ƒ G AAl 

£ m n ( / ; A ) = jnf | | / - r | U , ^ n ( / ; A ) = inf | | / - r | | A . 

It is known that these infima are attained (proof by a normal families argu­
ment due to Walsh [10]), and we let iVmn(/; A) and Nr

mn(f;A) denote the 
number (finite or infinite) of best approximations (BA 's) to ƒ. 

Finally, set I = [-1,1], and let Ah A\, || • \\h Emn{f;I), Er
mn(f;I), 

Nmn(f; I), Nr
mn(f) I) be defined analogously. (Aj and A} are just the sets 

of continuous complex and real functions on J, respectively.) 

2. Nonuniqueness. It is a classical result due to Achieser that N^^f'jl) = 
1 for all m, n and all ƒ G A}. But Lungu [4] (on proposal of A. A. Gonëar) and 
independently Saff and Varga [6, 7] found that for all m and n there exists ƒ G 
A} with Emn(f;I) < £'Jnn(/;7), so that by symmetry necessarily Nmn(f)I) > 
2. Ruttan [5] even gave an example with Nu(f;I) = oo. However, the 
analogous questions for the disk have been open [2, 9]. We claim [3]: 

T H E O R E M 1. Vm; n, VK >l,3fe AA such that Nmn(f) A) > K. 

T H E O R E M 2. Vra, n with m = 0 or n = 1, 3 ƒ G Ar
A such that Emn{ ƒ ; A) 

<£ rmn(/;A). 

T H E O R E M 3. Vra, n, 3f e Ar
A such that Nr

mn(f; A) > 1. 
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