BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 8, Number 3, May 1983

PERIODIC SOLUTIONS OF NONLINEAR VIBRATING STRINGS AND DUALITY PRINCIPLES

BY HAÏM BREZIS

Introduction. Our lecture deals with the study of *T*-periodic solutions for the nonlinear vibrating string equation:

(1)
$$u_{tt} - u_{xx} + g(u) = f(x, t), \quad 0 < x < \pi, t \in \mathbf{R}, \\ u(x, t) = 0, \quad x = 0, x = \pi, t \in \mathbf{R}, \\ u(x, t + T) = u(x, t), \quad 0 < x < \pi, t \in \mathbf{R}.$$

Here g denotes a continuous function on **R** such that g(0) = 0 and f(x, t) is a given T-periodic function of t.

Problem (1) may be viewed as an *infinite-dimensional Hamiltonian system* (let us recall that H. Poincaré has abundantly investigated the question of periodic solutions for finite-dimensional Hamiltonian systems; see [50]). Indeed if we set p = u and $q = u_t$, then (1) becomes

$$\frac{\partial}{\partial t} \begin{pmatrix} p \\ q \end{pmatrix} = \begin{pmatrix} H_q \\ -H_p \end{pmatrix} + \begin{pmatrix} 0 \\ f \end{pmatrix}$$

where the Hamiltonian H is defined on the space $H_0^1(0, \pi) \times L^2(0, \pi)$ by

$$H(p,q) = \frac{1}{2} \int_0^{\pi} (p_x)^2 dx + \int_0^{\pi} G(p) dx + \frac{1}{2} \int_0^{\pi} q^2 dx$$

and G denotes a primitive of g.

We shall be concerned with two distinct questions.

Question 1. Existence of forced vibrations; that is, given f(x, t) find at least one solution of (1).

Question 2. Existence of free vibrations (or "breathers"); that is, assume $f \equiv 0$ and find at least one nonzero solution of (1).

©1983 American Mathematical Society 0082-0717/82/0000-0594/\$04.50

Received by the editors June 1, 1982.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 35K60.