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The monograph is well written. Despite some omissions, the book, which is 
intended for a broader audience, can also be an excellent reference book for a 
mathematican interested in nonlinear functional analysis. The bibliography of 
39 pages is very impressive. 
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Groups, trees and projective modules, by Warren Dicks, Lecture Notes in Math., 
vol. 790, Springer-Verlag, Berlin and New York, 1980, 126 pp., $9.80. 

Trees, by Jean-Pierre Serre, Springer-Verlag, Berlin and New York, 1980, 
ix + 142 pp., $29.80. 

Classically, one studies a discrete subgroup T of a Lie group G by its action 
on the homogeneous space X = G/K where K is a maximal compact subgroup 
of G\ for torsion-free T, the form T \ X is a K(T, 1) space. When G = SL2(R) 
and T = SL2(Z) one has the well-studied reduction theory for T and its 
subgroups acting on the upper half-plane % = SL2(R)/S02 by linear frac
tional transformations. A program initiated by Bruhat and Tits makes avail
able certain simplicial complexes called buildings which play the role of the 
symmetric space for/?-adic groups [20, 22, 28]. For G = SLn(Qp) the building 
is a contractible n — 1 dimensional complex, Tn(Qp), in which the vertices are 
the elements of SLn(Qp)/SLn(Zp) and the simplices come from flags of 
Z^-submodules of Q^ which "cover" flags of subspaces of (Z/pZ)n. When 
n — 2 this Bruhat-Tits tree provides the background fiber to the first part of 


