The monograph is well written. Despite some omissions, the book, which is intended for a broader audience, can also be an excellent reference book for a mathematican interested in nonlinear functional analysis. The bibliography of 39 pages is very impressive.

References

1 M. Altman, *Contractor and contractors directions, theory and applications*, Lecture Notes in Pure and Appl. Math., vol. 32, Dekker, New York, 1977.

2 _____, Contractors and fixed points, Abstracts Amer. Math. Soc. 3 (1982), 357; Abstract #796-47-79.

3 K. Balakrishna Reddy and P. V. Subrahmanyam, Altman's contractors and Matkowski's fixed point theorem, J. Nonlinear Analysis (to appear).

4 H. Brézis and F. E. Browder, A general principle on ordered sets, Adv. in Math. 21 (1976), 355-364.

5 J. Dugundji and A. Granas, *Fixed point theory*, vol I, PWN-Polish Scientific Publ., Warsaw, Poland, 1982.

6 I. Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc. (N.S.) 1 (1979), 443-447.

7 H.-H. Kuo, Stochastic integral contractors, J. Integral Equations 1 (1979), 35-46.

8 A. J. Michaels, Hilden's simple proof of Lomonosov's invariant subspace theorem, Adv. in Math. 25 (1977), 56-58.

9 W. J. Padgett and A. C.-H. Lee, Random contractors and solutions of random nonlinear equations, J. Nonlinear Analysis 1 (1977), 175-185.

10 D. R. Smart, Fixed point theorems, Cambridge Tracts in Math., Cambridge Univ. Press, New York, 1974.

MIECZYSLAW ALTMAN

BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 8, Number 2, March 1983 ©1983 American Mathematical Society 0273-0979/82/0000-1133/\$02.00

Groups, trees and projective modules, by Warren Dicks, Lecture Notes in Math., vol. 790, Springer-Verlag, Berlin and New York, 1980, 126 pp., \$9.80.

Trees, by Jean-Pierre Serre, Springer-Verlag, Berlin and New York, 1980, ix + 142 pp., \$29.80.

Classically, one studies a discrete subgroup Γ of a Lie group G by its action on the homogeneous space X = G/K where K is a maximal compact subgroup of G; for torsion-free Γ , the form $\Gamma \setminus X$ is a $K(\Gamma, 1)$ space. When $G = SL_2(\mathbb{R})$ and $\Gamma = SL_2(\mathbb{Z})$ one has the well-studied reduction theory for Γ and its subgroups acting on the upper half-plane $\mathcal{K} = SL_2(\mathbb{R})/SO_2$ by linear fractional transformations. A program initiated by Bruhat and Tits makes available certain simplicial complexes called buildings which play the role of the symmetric space for *p*-adic groups [20, 22, 28]. For $G = SL_n(\mathbb{Q}_p)$ the building is a contractible n - 1 dimensional complex, $T_n(\mathbb{Q}_p)$, in which the vertices are the elements of $SL_n(\mathbb{Q}_p)/SL_n(\mathbb{Z}_p)$ and the simplices come from flags of \mathbb{Z}_p -submodules of \mathbb{Q}_p^n which "cover" flags of subspaces of $(\mathbb{Z}/p\mathbb{Z})^n$. When n = 2 this Bruhat-Tits tree provides the background fiber to the first part of