sets. That same statement could be made, of course, about the entire book. We are among those who are applauding.

References

1. R. V. Benson, Euclidean geometry and convexity, McGraw-Hill, New York, 1966.
2. H. G. Eggleston, Convexity, Cambridge Univ. Press, Cambridge, England, 1966.
3. B. Grünbaum, Convex polytopes, Wiley, 1967.
4. P. C. Hammer and Andrew Sobczyk, Planar line families.I, Proc. Amer. Math. Soc. 4 (1953), 226-233.
5. P. J. Kelly and M. L. Weiss, Geometry and convexity, Wiley, New York, 1979.
6. L. A. Lyusternik, Convex figures and polyhedra, Dover, New York, 1963.
7. A. W. Roberts and D. E. Varberg, Convex functions, Academic Press, New York, 1973.
8. R. T. Rockafellar, Convex analysis, Princeton Univ. Press, Princeton, New Jersey, 1970.
9. F. A. Valentine, Convex sets, McGraw-Hill, New York, 1964.
10. I. M. Yaglom and V. G. Boltyanskii, Convex figures, Holt, Rinehart, and Winston, New York, 1961.
A. W. Roberts
D. E. Varberg

BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 8, Number 2, March 1983
© 1983 American Mathematical Society
0273-0979/82/0000-0977/\$01.75

Counterexamples in topological vector spaces, by S. M. Khaleelulla, Lecture Notes in Math., vol. 936, Springer-Verlag, Berlin and New York, 1982, xxi +179 pp., $\$ 10.70$.

Here is a rule-of-thumb test to identity latent mathematicians: Make an assertion. If the young person tries to prove it, (s)he fails the test; if (s)he tries to find a counterexample, you have a future mathematician on your hands.

Examples are more important than theorems. If you teach me the rules of a game and attempt to develop a theory, I will interrupt to say "Let's play it once". A course in groups containing pure theory would allow the conjecture "Ail groups are commutative" to stand unchallenged-besides failing to educate the students.

The role of examples is educational: the derivative of a specific function, a group with 5 members; but we shall be concerned with those which are always thought of as counter: a nowhere differentiable function, a nonmeasurable set.

Is the earliest known counterexample the book of Job? (Assertion: Holiness brings good fortune.)

What is the role of counterexamples in mathematics? (Are there any in Euclid?) I attempt to list the roles in decreasing order of importance; the "big" examples fall early in my list:

1. To refute widely held beliefs. (A nowhere differentiable continuous function, a series whose sum is discontinuous.)
2. To show the need to work in a more general setting. (A nonsequential limit point.)
3. To show the inadequacy of a definition. (Space-filling curve: what does dimension mean?).
