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The relationship between a group G and the collection of its finite-dimen
sional linear representations (or the category Mod(G) of finite-dimensional 
G-modules) is often subtle. For compact Lie groups, there are classical duality 
results affirming that the group is recoverable from a knowledge of its 
representations and how they tensor. For example, in case G is abelian, 
Pontryagin duality gives an isomorphism between G and G. Here the dual 
group G consists of the 1-dimensional representations of G (complex-valued 
characters), the product of characters corresponding to the tensor product of 
associated representations. 

Tannaka duality [5] does something similar for arbitrary compact Lie 
groups. The role of G is played by the collection of all finite-dimensional 
representations of G, whose "representations" are in turn identified with 
elements of G. In Chevalley's formulation [1], one forms the Hopf algebra 
R(G) of C-valued "representative functions" (matrix coordinate functions for 
representations of G), with a coproduct reflecting the product in G. Because G 
is compact, R(G)_is finitely generated, hence gives rise to a complex linear 
algebraic group G. The points of G can be thought of as algebra homomor-
phisms R(G) -> C, by identifying R(G) with functions on G. Duality means 
that G is realized as the group of real points of G. In this formulation, R(G) 
plays the role of a dual group, encapsulating the structure of Mod(G) as a 
category with tensor products. 

In a long series of joint papers (1957-1969), G. Hochschild and G. D. 
Mostow explored the Hopf algebra of representative functions of an arbitrary 
complex analytic group (cf. [3]). In case G is semisimple, its finite-dimensional 
representation theory is essentially that of its compact real form; so R(G) is 
finitely generated and gives G the structure of an algebraic group. But in 
general the story is far more complicated. In particular, distinct groups may 
give rise to the "same" category Mod(G). This happens in a fairly transparent 
way when G fails to have a faithful finite-dimensional (analytic) representation, 


