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The logic of quantum mechanics, by Enrico G. Beltrametti and Gianni Cas-
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Wesley, Reading, Mass., 1981, xxvi + 305 pp., $31.50. 

By their very nature, scientific theories cannot be proved. No matter how 
successful a theory has been in explaining the Universe, there always exists the 
possibility, however remote, that this particular theory is not the only one that 
can explain the given phenomena. There conceivably could exist another 
theory that could do just as well—if not better. This possibility is not as 
remote as it may seem. In the past, very few physical theories have lasted more 
than a century without being discarded or substantially modified. 

Quantum theory was brought about at the turn of the century by the failure 
of classical physics to explain the results of more accurate experiments which 
could measure atomic phenomena. The success of the theory was overwhelm
ing, and currently its acceptance among scientists is unquestioned. In the 
beginning the theory consisted of statements concerning physical quantities, 
but later writers attempted to axiomatize it and divorce it from concepts of 


