ON THE ZEROS OF DIRICHLET SERIES ASSOCIATED WITH CERTAIN CUSP FORMS ${ }^{1}$

JAMES L. HAFNER

As is well known, in 1859 Riemann [6] conjectured that the function $\varsigma(s)$ defined in $\operatorname{Re} s>1$ by the Dirichlet series $\sum_{n=1}^{\infty} n^{-s}$ has all its zeros, apart from the "trivial" zeros at the negative even integers, on the line $\operatorname{Re} s=\frac{1}{2}$. It is known that these "nontrivial" zeros lie symmetrically about the line $\operatorname{Re} s=$ $\frac{1}{2}$ within the strip $0<\operatorname{Re} s<1$. The truth of this Riemann Hypothesis would have a profound impact in the theory of numbers, particularly with regard to the distribution of primes.

One of the major achievements in this theory was due to Selberg [7] in 1943. He proved for $\zeta(s)$ that a positive proportion of the nontrivial zeros lie on the critical line. Later authors have given specific numerical values for this proportion. In this note we announce the proof of a similar theorem for Dirichlet series attached to certain cusp forms on the full modular group. We formulate the specific theorem below.

Let $F(z)$ be a holomorphic cusp form of even integral weight k and constant multiplier system for the full modular group $\Gamma(1)=S L(2, \mathbf{Z}) /\{ \pm I\}$. That is,

$$
F(M z)=(c z+d)^{k} F(z), \quad M=\left(\begin{array}{ll}
* & * \\
c & d
\end{array}\right) \in \Gamma(1)
$$

and $F(z)$ vanishes at $i \infty$. Expand $F(z)$ in a "Fourier series" at the cusp $i \infty$ as

$$
F(z)=\sum_{l=1}^{\infty} f(l) e^{2 \pi i l z}
$$

The Dirichlet series $L_{f}(s)=\sum_{l=1}^{\infty} f(l) l^{-s}$ converges absolutely for

$$
\operatorname{Re} s>(k+1) / 2
$$

and can be continued to an entire function in the s-plane. Furthermore, $L_{f}(s)$ has all its nontrivial zeros in the strip $(k-1) / 2<\operatorname{Re} s<(k+1) / 2$. Let

$$
N(T)=\#\left\{\rho=\beta+i \gamma: 0<\gamma<T,(k-1) / 2<\beta<(k+1) / 2, L_{f}(\rho)=0\right\}
$$

and

$$
N_{0}(T)=\#\left\{\rho=k / 2+i \gamma: 0<\gamma<T, L_{f}(\rho)=0\right\} .
$$

It is known [4] that $N(T) \sim c T \log T$ for some constant $c>0$. We then have the following theorem.

[^0]
[^0]: Received by the editors July 14, 1982 and, in revised form, September 7, 1982.
 1980 Mathematics Subject Classification. Primary 10D24, 10H10, 10 D 12.
 ${ }^{1}$ Research partially supported by NSF Grant MCS 77-18723A03 at the Institute for Advanced Study.

