ON THE ZEROS OF DIRICHLET SERIES ASSOCIATED WITH CERTAIN CUSP FORMS¹

JAMES L. HAFNER

As is well known, in 1859 Riemann [6] conjectured that the function $\zeta(s)$ defined in $\operatorname{Re} s > 1$ by the Dirichlet series $\sum_{n=1}^{\infty} n^{-s}$ has all its zeros, apart from the "trivial" zeros at the negative even integers, on the line $\operatorname{Re} s = \frac{1}{2}$. It is known that these "nontrivial" zeros lie symmetrically about the line $\operatorname{Re} s = \frac{1}{2}$ within the strip $0 < \operatorname{Re} s < 1$. The truth of this Riemann Hypothesis would have a profound impact in the theory of numbers, particularly with regard to the distribution of primes.

One of the major achievements in this theory was due to Selberg [7] in 1943. He proved for $\zeta(s)$ that a positive proportion of the nontrivial zeros lie on the critical line. Later authors have given specific numerical values for this proportion. In this note we announce the proof of a similar theorem for Dirichlet series attached to certain cusp forms on the full modular group. We formulate the specific theorem below.

Let F(z) be a holomorphic cusp form of even integral weight k and constant multiplier system for the full modular group $\Gamma(1) = SL(2, \mathbb{Z})/\{\pm I\}$. That is,

$$F(Mz) = (cz+d)^k F(z), \qquad M = \begin{pmatrix} * & * \\ c & d \end{pmatrix} \in \Gamma(1),$$

and F(z) vanishes at $i\infty$. Expand F(z) in a "Fourier series" at the cusp $i\infty$ as

$$F(z) = \sum_{l=1}^{\infty} f(l) e^{2\pi i l z}.$$

The Dirichlet series $L_f(s) = \sum_{l=1}^{\infty} f(l) l^{-s}$ converges absolutely for

 ${
m Re}\,s > (k+1)/2$

and can be continued to an entire function in the s-plane. Furthermore, $L_f(s)$ has all its nontrivial zeros in the strip $(k-1)/2 < \operatorname{Re} s < (k+1)/2$. Let

$$N(T) = \#\{\rho = \beta + i\gamma : 0 < \gamma < T, (k-1)/2 < \beta < (k+1)/2, L_f(\rho) = 0\}$$

and

$$N_0(T) = \#\{\rho = k/2 + i\gamma : 0 < \gamma < T, L_f(\rho) = 0\}.$$

It is known [4] that $N(T) \sim cT \log T$ for some constant c > 0. We then have the following theorem.

Received by the editors July 14, 1982 and, in revised form, September 7, 1982.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 10D24, 10H10, 10D12.

¹Research partially supported by NSF Grant MCS 77-18723A03 at the Institute for Advanced Study.

^{© 1983} American Mathematical Society 0273-0979/82/0000-1200/\$01.75