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ON THE ZEROS OF DIRICHLET SERIES 
ASSOCIATED WITH CERTAIN CUSP FORMS1 

JAMES L. HAFNER 

As is well known, in 1859 Riemann [6] conjectured that the function ç(s) 
defined in Res > 1 by the Dirichlet series Yln=in~s n a s a ^ ^s zeros, apart 
from the "trivial" zeros at the negative even integers, on the line Res = \. It 
is known that these "nontrivial" zeros lie symmetrically about the line Re s = 
\ within the strip 0 < Res < 1. The truth of this Riemann Hypothesis would 
have a profound impact in the theory of numbers, particularly with regard to 
the distribution of primes. 

One of the major achievements in this theory was due to Selberg [7] in 
1943. He proved for ç(s) that a positive proportion of the nontrivial zeros 
lie on the critical line. Later authors have given specific numerical values for 
this proportion. In this note we announce the proof of a similar theorem for 
Dirichlet series attached to certain cusp forms on the full modular group. We 
formulate the specific theorem below. 

Let F(z) be a holomorphic cusp form of even integral weight k and constant 
multiplier system for the full modular group T(l) = SL(2,Z)/{±I}. That is, 

F{Mz) = [cz + d)kF(z), M = \ l *d}€ rW> 

and F(z) vanishes at ioo. Expand F(z) in a "Fourier series" at the cusp zoo 
as 

F(z)=f:f(l)e2"il*. 
1 = 1 

The Dirichlet series Lf(s) = X^zli fW~s converges absolutely for 

Res>(/c + l)/2 

and can be continued to an entire function in the s-plane. Furthermore, Lf(s) 
has all its nontrivial zeros in the strip (k — l)/2 < Res < (k + l)/2. Let 

N(T) = #{p = p + i1:0<1<T,(k-l)/2<f3<(k + l)/2,Lf(p) = 0} 

and 
N0(T) = #{p = fc/2 + n : 0 < 7 < T, Lf(p) = 0}. 

It is known [4] that N(T) ~ cTlogT for some constant c > 0. We then have 
the following theorem. 
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