EXISTENCE THEOREMS FOR GENERALIZED KLEIN-GORDON EQUATIONS

BY EZZAT S. NOUSSAIR AND CHARLES A. SWANSON ${ }^{1}$

The semilinear elliptic partial differential equation

$$
\begin{equation*}
L u=f(x, u), \quad x \in \Omega \tag{1}
\end{equation*}
$$

is to be considered in smooth unbounded domains $\Omega \subseteq R^{N}, N \geq 2$, where

$$
\begin{equation*}
L u=-\sum_{i, j=1}^{N} D_{i}\left[a_{i j}(x) D_{j} u\right]+b(x) u, \quad x \in \Omega \tag{2}
\end{equation*}
$$

$D_{i}=\partial / \partial x_{i}, i=1, \ldots, N ;$ each $a_{i j} \in C_{\text {loc }}^{1+\alpha}(\Omega), b \in C_{\text {loc }}^{\alpha}(\Omega), 0<\alpha<1 ; b(x) \geq$ $b_{0}>0$ for all $x \in \bar{\Omega}, L$ is uniformly elliptic in Ω, and $f(x, u)$ satisfies all the conditions in either list (F) or list (F^{\prime}) below. Our main objective is to prove the existence of a positive solution $u(x)$ of (1) in Ω satisfying the boundary condition $u(x)=0$ on $\partial \Omega$ (void if $\Omega=R^{N}$), and to obtain asymptotic estimates as $|x| \rightarrow \infty$.

The physical importance of the Klein-Gordon prototype

$$
\begin{equation*}
-\Delta u+b(x) u=\delta\left[p(x) u^{\gamma}-q(x) u^{\beta}\right], \quad x \in \Omega, \tag{3}
\end{equation*}
$$

arises in particular from nonlinear field theory; the existence of solitary waves and asymptotic behavior as $|x| \rightarrow \infty$ follow from our theorems. It is assumed in (3) that p and q are nonnegative, bounded, and locally Hölder continuous in $\Omega, 1<\gamma<\beta$, and $\delta= \pm 1$. The Hypotheses (F^{\prime}) below are all satisfied if $\delta=+1$ and p / q is bounded and bounded away from zero in Ω. Hypotheses (F) are all satisfied if $\delta=-1, \beta<(N+2) /(N-2), N \geq 3$, and $q(x)>0$.

HYPOTHESES F (UNBOUNDED NONLINEARITY)

$\left(\mathrm{f}_{1}\right) f \in C_{\mathrm{loc}}^{\alpha}(\Omega \times R)$ and $f(x, t)$ is locally Lipschitz continuous with respect to t for all $x \in \Omega$.
$\left(\mathrm{f}_{2}\right)$ There exist positive constants $s_{i}>1$ and nonnegative, bounded continuous functions $f_{i} \in L^{2} \Omega, i=1, \ldots, I$, such that

$$
|f(x, t)| \leq \sum_{i=1}^{I} f_{i}(x)|t|^{s_{i}}, \quad x \in \bar{\Omega}, t \in R,
$$

where each $s_{i}<(N+2) /(N-2)$ if $N \geq 3$.
$\left(\mathrm{f}_{3}\right) f(x, t) / t \rightarrow+\infty$ as $t \rightarrow+\infty$ locally uniformly in Ω.

[^0]
[^0]: Received by the editors May 18, 1982 and, in revised form, September 3, 1982.
 1980 Mathematics Subject Classification. Primary 35J65; Secondary 35B40.
 ${ }^{1}$ Support of NSERC (Canada) is gratefully acknowledged.

