EXISTENCE THEOREMS FOR GENERALIZED KLEIN-GORDON EQUATIONS

BY EZZAT S. NOUSSAIR AND CHARLES A. SWANSON¹

The semilinear elliptic partial differential equation

(1)
$$Lu = f(x, u), \quad x \in \Omega,$$

is to be considered in smooth unbounded domains $\Omega \subseteq \mathbb{R}^N$, $N \ge 2$, where

(2)
$$Lu = -\sum_{i,j=1}^{N} D_i[a_{ij}(x)D_ju] + b(x)u, \quad x \in \Omega,$$

 $D_i = \partial/\partial x_i, \ i = 1, \dots, N$; each $a_{ij} \in C_{loc}^{1+\alpha}(\Omega), \ b \in C_{loc}^{\alpha}(\Omega), \ 0 < \alpha < 1; \ b(x) \ge b_0 > 0$ for all $x \in \overline{\Omega}$, L is uniformly elliptic in Ω , and f(x, u) satisfies all the conditions in either list (F) or list (F') below. Our main objective is to prove the existence of a positive solution u(x) of (1) in Ω satisfying the boundary condition u(x) = 0 on $\partial\Omega$ (void if $\Omega = \mathbb{R}^N$), and to obtain asymptotic estimates as $|x| \to \infty$.

The physical importance of the Klein-Gordon prototype

(3)
$$-\Delta u + b(x)u = \delta[p(x)u^{\gamma} - q(x)u^{\beta}], \quad x \in \Omega,$$

arises in particular from nonlinear field theory; the existence of solitary waves and asymptotic behavior as $|x| \to \infty$ follow from our theorems. It is assumed in (3) that p and q are nonnegative, bounded, and locally Hölder continuous in Ω , $1 < \gamma < \beta$, and $\delta = \pm 1$. The Hypotheses (F') below are all satisfied if $\delta = +1$ and p/q is bounded and bounded away from zero in Ω . Hypotheses (F) are all satisfied if $\delta = -1$, $\beta < (N+2)/(N-2)$, $N \ge 3$, and q(x) > 0.

HYPOTHESES F (UNBOUNDED NONLINEARITY)

(f₁) $f \in C^{\alpha}_{loc}(\Omega \times R)$ and f(x,t) is locally Lipschitz continuous with respect to t for all $x \in \Omega$.

(f₂) There exist positive constants $s_i > 1$ and nonnegative, bounded continuous functions $f_i \in L^2\Omega$, i = 1, ..., I, such that

$$|f(x,t)| \leq \sum_{i=1}^{I} f_i(x)|t|^{s_i}, \quad x \in \overline{\Omega}, \ t \in R,$$

where each $s_i < (N+2)/(N-2)$ if $N \ge 3$.

(f₃) $f(x,t)/t \to +\infty$ as $t \to +\infty$ locally uniformly in Ω .

Received by the editors May 18, 1982 and, in revised form, September 3, 1982.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 35J65; Secondary 35B40.

¹Support of NSERC (Canada) is gratefully acknowledged.

^{© 1983} American Mathematical Society 0273-0979/82/0000-1201/\$01.75