STRICTLY PSEUDOCONVEX DOMAINS IN Cⁿ

BY MICHAEL BEALS, CHARLES FEFFERMAN AND ROBERT GROSSMAN

CONTENTS

- 0. Foreword
- Chapter 1. Brief Introduction
- Chapter 2. Mechanics
 - 1. Newton's equations and canonical transformations
 - 2. Generating functions
 - 3. The Hamilton-Jacobi equation
- Chapter 3. Elliptic partial differential equations
 - 1. SIOs and ψ DOs
 - 2. Boundedness of SIOs on $\Lambda(\alpha)$
 - 3. Boundedness of ψ DOs on L^2
 - 4. Stationary phase and the calculus of ψ DOs
 - 5. Elliptic regularity
 - 6. Schauder theory
 - 7. Boundary value problems
- Chapter 4. The wave equation
 - 1. A parametrix for \Box
 - 2. Hörmander's theorem
 - 3. Fourier integral operators and stationary phase
 - 4. Egorov's theorem
 - 5. The composition formula
 - 6. Proof of Hörmander's Theorem
 - 7. Introduction to global Fourier integral operators
 - 8. Introduction to Fourier integral operators with complex phase
- Chapter 5. Elementary differential geometry and the heat equation
 - 1. Riemannian manifolds

 - Complex manifolds
 Bundles over Riemannian manifolds
 - 4. The Laplace operator
 - 5. The Euler characteristic
 - 6. Asymptotics of the heat kernel
 - 7. The Chern-Gauss-Bonnet Theorem
 - 8. Hermann Weyl's invariant theory
 - 9. Gilkey's invariant theory
- Chapter 6. An overview of topics in several complex variables
 - 1. Introduction
 - 2. Linear analysis: $\overline{\partial}$, \Box , $\overline{\partial}_b$, \Box_b
 - 3. The unit ball and the Siegel domain

©1983 American Mathematical Society 0273-0979/82/0000-0716/\$91.75

Received by the editors June 10, 1982.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 32F15.