
102 BOOK REVIEWS 

review, is supplemented by 236 pages of appendices that bring the book 
up-to-date, and provide a more systematic treatment of some topics from the 
French version. In summary, the authors have prepared a valuable reference 
for mathematicians and engineers. 
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Bounded analytic functions, by John B. Garnett, Academic Press, New York, 
1981, xvi + 468 pp., $59.00. 

The book under review belongs to an area which, for want of a better term, I 
shall call one-dimensional function theory. "Function theory" should be 
interpreted here, not in the old sense of the theory of functions of a complex 
variable, but rather in a broader sense encompassing both the analysis of 
functions, holomorphic or not, and the analysis of spaces of functions. The 
settings for one-dimensional function theory are primarily the unit disk and 
the upper half of the complex plane together with their boundaries, the unit 
circle and the real line, respectively. 

One-dimensional function theory is not a branch of mathematics in the way 
that, say, operator theory and low-dimensional topology are. Perhaps it does 
not even deserve a name of its own. The operator theorist seeks to understand 
the structure of operators, the low-dimensional topologist to understand the 
structure of three-dimensional and four-dimensional manifolds. The practi­
tioner of one-dimensional function theory is aware of no comparable ultimate 
goal. This in part reflects the status of one-dimensional function theory as a 
handmaiden of several other, more coherent, disciplines—operator theory, 
theory of Banach spaces and topological vector spaces, prediction theory, 
systems theory, theory of commutative Banach algebras—which it provides 


