BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 8, Number 1, January 1983 © 1983 American Mathematical Society 0273-0979/82/0000-0780/\$01.50

Numerical analysis of variational inequalities, by R. Glowinski, J. L. Lions and R. Trémolières, Studies in Mathematics and its Applications, vol. 8, North-Holland, Amsterdam, 1981, xxx + 778 pp., \$109.75.

Consider the problem of minimizing a real-valued function f over a space V. If u attains the minimum and f is differentiable at u, then f'[u] = 0. On the other hand, if K is a convex subset of V and u is optimal for the problem

(1) minimize
$$\{f(v): v \in K\},\$$

then an inequality holds,

(2)
$$f'[u](v-u) \ge 0 \quad \forall v \in K.$$

Loosely speaking, (2) says that f increases when we move from u into K. The book by Glowinski, Lions, and Trémolières studies numerical aspects of (1) and (2) for a broad class of physical problems.

The obstacle problem illustrates the type of inequality included in their analysis: Given an open set $\Omega \subset R^2$ and functions $f \in \mathcal{L}^2(\Omega)$ and $\psi \in \mathcal{K}^2(\Omega)$,

minimize
$$\int_{\Omega} \left\{ \left(\frac{\partial v}{\partial x} \right)^2 + \left(\frac{\partial v}{\partial y} \right)^2 + 2 f v \right\} dx \, dy$$

subject to $v \in \mathcal{H}^1(\Omega)$, v = 0 on $\partial\Omega$, $v \ge \psi$ almost everywhere in Ω . Here $\mathcal{L}^2(\Omega)$ is the space of real-valued functions that are square integrable on Ω , and $\mathcal{H}^k(\Omega) \subset \mathcal{L}^2(\Omega)$ is the Sobolev subspace consisting of functions whose derivatives through order k lie in $\mathcal{L}^2(\Omega)$. The function ψ is the obstacle. In this context, it can be shown [3] that the inequality (2) is equivalent to the relations

$$\left. \begin{array}{c} u \geq \psi \\ f \geq \Delta u \\ (f - \Delta u)(\psi - u) = 0 \end{array} \right\} \quad \text{almost everywhere in } \Omega.$$

These relations tell us that $u = \psi$ on part of Ω while $u > \psi$ and $\Delta u = f$ on the complement. The curve that forms the boundary of $\{x \in R^2: u(x) > \psi(x)\}$ is often called the *contact set*.

Many physical problems have the form (1) or (2), and the book by Duvaut and Lions [6] is a good reference on this subject. For example, in plasticity theory, the stress is constrained to lie inside a yield surface. The stress potential for an elastic-perfectly plastic cylindrical bar undergoing torsion is the solution to the problem

minimize
$$\int_{\Omega} \left\{ \left(\frac{\partial v}{\partial x} \right)^2 + \left(\frac{\partial v}{\partial y} \right)^2 + 2 f v \right\} dx \, dy$$

subject to $v \in \mathcal{H}^{1}(\Omega)$, v = 0 on $\partial\Omega$, $(\partial v/\partial x)^{2} + (\partial v/\partial y)^{2} \leq 1$ almost everywhere in Ω where Ω is the bar's cross-section, and the constraint $|\nabla v|^{2} \leq 1$ is