BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 8, Number 1, January 1983
© 1983 American Mathematical Society
0273-0979/82/0000-0780/\$01.50
Numerical analysis of variational inequalities, by R. Glowinski, J. L. Lions and R. Trémolières, Studies in Mathematics and its Applications, vol. 8, NorthHolland, Amsterdam, 1981, xxx +778 pp., \$109.75.

Consider the problem of minimizing a real-valued function f over a space V. If u attains the minimum and f is differentiable at u, then $f^{\prime}[u]=0$. On the other hand, if K is a convex subset of V and u is optimal for the problem

$$
\begin{equation*}
\operatorname{minimize}\{f(v): v \in K\}, \tag{1}
\end{equation*}
$$

then an inequality holds,

$$
\begin{equation*}
f^{\prime}[u](v-u) \geqslant 0 \quad \forall v \in K \tag{2}
\end{equation*}
$$

Loosely speaking, (2) says that f increases when we move from u into K. The book by Glowinski, Lions, and Trémolières studies numerical aspects of (1) and (2) for a broad class of physical problems.

The obstacle problem illustrates the type of inequality included in their analysis: Given an open set $\Omega \subset R^{2}$ and functions $f \in \mathfrak{L}^{2}(\Omega)$ and $\psi \in \mathscr{H}^{2}(\Omega)$,

$$
\operatorname{minimize} \int_{\Omega}\left\{\left(\frac{\partial v}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial y}\right)^{2}+2 f v\right\} d x d y
$$

subject to $v \in \mathcal{F}^{1}(\Omega), v=0$ on $\partial \Omega, v \geqslant \psi$ almost everywhere in Ω. Here $\mathcal{L}^{2}(\Omega)$ is the space of real-valued functions that are square integrable on Ω, and $\mathscr{H}^{k}(\Omega) \subset \mathscr{L}^{2}(\Omega)$ is the Sobolev subspace consisting of functions whose derivatives through order k lie in $\mathcal{L}^{2}(\Omega)$. The function ψ is the obstacle. In this context, it can be shown [3] that the inequality (2) is equivalent to the relations

$$
\left.\begin{array}{l}
u \geqslant \psi \\
f \geqslant \Delta u \\
(f-\Delta u)(\psi-u)=0
\end{array}\right\} \quad \text { almost everywhere in } \Omega
$$

These relations tell us that $u=\psi$ on part of Ω while $u>\psi$ and $\Delta u=f$ on the complement. The curve that forms the boundary of $\left\{x \in R^{2}: u(x)>\psi(x)\right\}$ is often called the contact set.

Many physical problems have the form (1) or (2), and the book by Duvaut and Lions [6] is a good reference on this subject. For example, in plasticity theory, the stress is constrained to lie inside a yield surface. The stress potential for an elastic-perfectly plastic cylindrical bar undergoing torsion is the solution to the problem

$$
\text { minimize } \int_{\Omega}\left\{\left(\frac{\partial v}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial y}\right)^{2}+2 f v\right\} d x d y
$$

subject to $v \in \mathcal{F}^{1}(\Omega), v=0$ on $\partial \Omega,(\partial v / \partial x)^{2}+(\partial v / \partial y)^{2} \leqslant 1$ almost everywhere in Ω where Ω is the bar's cross-section, and the constraint $|\nabla v|^{2} \leqslant 1$ is

