SIMULTANEOUS SIMILARITY OF MATRICES

SHMUEL FRIEDLAND

Let M_{n} be the set of $n \times n$ matrices over the algebraically closed field k, G_{n} the general linear group in $M_{n}, M_{n, m}=M_{n} \times \cdots \times M_{n}(m+1$ times $) . G_{n}$ acts naturally on $M_{n, m}$ by the conjugation $T M_{n, m} T^{-1}$. For $\alpha=\left(A_{0}, \ldots, A_{m}\right) \in$ $M_{n, m}$ denote by $\operatorname{orb}(\alpha)$ the orbit of α in $M_{n, m}$,

$$
\operatorname{orb}(\alpha)=\left\{\beta \in M_{n, m}, \beta=T \alpha T^{-1}=\left(T A_{0} T^{-1}, \ldots, T A_{m} T^{-1}\right), T \in G L_{n}\right\}
$$

It is a well-known problem to classify $\operatorname{orb}(\alpha)$ for $m \geq 1$. See for example [2]. Rosenlicht in [3] outlined a general classification based on the ideas of algebraic geometry. The classification consists of a finite number of steps. In each step we get an algebraic irreducible variety V in $M_{n, m}$ which is invariant, that is $T V T^{-1}=V$ for all $T \in G_{n}$. Then, we consider $k(V)^{G}$-the field of rational functions on V which are invariant, i.e. these functions are constant on $\operatorname{orb}(\alpha)$. It follows that $k(V)^{G}$ is finitely generated, let us say by $\chi_{1}, \ldots, \chi_{j}$. Then there exists locally closed algebraic invariant set V^{0} in V such that for any $\alpha \in V^{0} \chi_{1}, \ldots, \chi_{j}$ are well defined on $\operatorname{orb}(\alpha)$ and the values of χ_{k}, $k=1, \ldots, j$, on $\operatorname{orb}(\alpha)$ determine this orbit uniquely in V^{0}.

The purpose of this announcement is to describe explicitly the open invariant varieties V^{0} together with the invariant rational functions $\varphi_{1}, \ldots, \varphi_{k}$ defined on V^{0} such that the values of $\varphi_{1}, \ldots, \varphi_{k}$ on $\operatorname{orb}(\alpha)$ determine a finite number of orbits. We also describe some results on orbits in $S_{n, m}=S_{n} \times \cdots \times$ $S_{n}\left(m+1\right.$ times) ($S_{n}=$ the set of $n \times n$ complex symmetric matrices) under the action of O_{n}-complex orthogonal group in M_{n}.

For $\alpha=\left(A_{0}, \ldots, A_{m}\right), \beta=\left(B_{0}, \ldots, B_{m}\right)$ let $\operatorname{adj}(\alpha, \beta): M_{n} \rightarrow M_{n, m}$ be a linear operator given by $\operatorname{adj}(\alpha, \beta)(X)=\left(A_{0} X-X B_{0}, \ldots, A_{m} X-X B_{m}\right)$.

We identify $\operatorname{adj}(\alpha, \alpha)$ with $\operatorname{adj}(\alpha)$. Let $r(\alpha, \beta)$ and $r(\alpha)$ be the ranks of $\operatorname{adj}(\alpha, \beta)$ and $\operatorname{adj}(\alpha)$ respectively. Then $r(\alpha)$ is the first discrete invariant of $\operatorname{orb}(\alpha)$ and it gives the dimension of the manifold $\operatorname{orb}(\alpha)$. Suppose that $\beta \in$ $\operatorname{orb}(\alpha)$. Then one easily shows that $r(\alpha, \beta)=r(\alpha)$. Fix α and consider all $\xi \in M_{n, m}$ which satisfy the inequality

$$
\begin{equation*}
\chi(\alpha)=\left\{\xi, r(\alpha, \xi) \leq r, \xi=\left(X_{0}, \ldots, X_{m}\right) \in M_{n, m}\right\} . \tag{1}
\end{equation*}
$$

The set $\mathcal{X}(\alpha)$ is an algebraic set in $M_{n, m}$ which can be given by

$$
N(r)=\binom{n^{2}}{r+1}\left(\begin{array}{cc}
n^{2} & (m+1) \\
& r+1
\end{array}\right) \text { polynomial equations. }
$$

