ARITHMETIC CHARACTERIZATIONS OF SIDON SETS

GILLES PISIER

ABSTRACT. Let \hat{G} be any discrete Abelian group. We give several arithmetic characterizations of Sidon sets in \hat{G} . In particular, we show that a set Λ is a Sidon set iff there is a number $\delta>0$ such that any finite subset A of Λ contains a subset $B\subset A$ with $|B|\geq \delta |A|$ which is quasi-independent, i.e. such that the only relation of the form $\sum_{\lambda\in B}\epsilon_{\lambda}\lambda=0$, with ϵ_{λ} equal to ± 1 or 0, is the trivial one.

Let G be a compact Abelian group and let \hat{G} be the dual group. For any f in $L_2(G)$, we denote by \hat{f} the Fourier transform of f. A subset Λ of \hat{G} is called a Sidon set if there is a constant K with the following property: all the trigonometric polynomials f, such that \hat{f} is supported by Λ , satisfy

$$\sum |\hat{f}(\gamma)| \le K||f||_{C(G)}.$$

We will denote by $S(\Lambda)$ the smallest constant K with this property. In the theory of Sidon sets (cf. e.g. [2]), there has always been considerable interest in the relations between this analytical definition and the arithmetic properties of the set Λ (in particular, in the case $G = \mathbf{T}$ and $\Lambda \subset \mathbf{Z}$). The aim of this note is to announce several arithmetic characterizations of Sidon sets.

Let us make more precise what we mean here by "arithmetic". We will denote by R_{Λ} the set of relations (with coefficients in $\{-1,0,1\}$) satisfied by Λ , i.e. the set of all finitely supported families $(\epsilon_{\lambda})_{\lambda \in \Lambda}$ in $\{-1,0,1\}^{\Lambda}$ such that $\sum_{\lambda \in \Lambda} \epsilon_{\lambda} \lambda = 0$.

By an "arithmetic" characterization is usually meant one which depends only on the set R_{Λ} . In [1], Drury¹ proved that such a characterization exists, but he could not produce any explicit one. Precisely, he proved the following: let Λ and Λ' be two sets for which there is a bijection $\phi \colon \Lambda' \to \Lambda$ such that the map $\tilde{\phi} \colon R_{\Lambda} \to R_{\Lambda'}$, defined by $\tilde{\phi}((\epsilon_{\lambda})_{\lambda \in \Lambda}) = (\epsilon_{\phi(\lambda')})_{\lambda' \in \Lambda'}$, is also a bijection. Then, Λ is a Sidon set iff the same is true for Λ' . In other words, the property of "being a Sidon set" is determined by R_{Λ} . We give below several *explicit* arithmetic characterizations, from which the preceding result of Drury follows as a corollary.

To state our results, we will need some notation and terminology. We will denote by I_{Λ} the set of all finitely supported families $(\epsilon_{\lambda})_{\lambda \in \Lambda}$ in $\{-1,0,1\}^{\Lambda}$. For any γ in \hat{G} , we will denote by $R(\gamma,\Lambda)$ the number of ways to write γ as

Received by the editors July 14, 1982.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 43A46, 42A55; Secondary 41A46, 41A65. Key words and phrases. Sidon sets, dissociate sets, relations, arithmetic characterization.

¹Drury considers only relations such that moreover $\sum_{\lambda \in \Lambda} \epsilon_{\lambda} = 0$, but this difference is not significant, since we can replace Λ by the set $\tilde{\Lambda} \subset \hat{G} \times \mathbf{Z}$ defined by $\tilde{\Lambda} = \{(\lambda, 1) | \lambda \in \Lambda\}$.