ON PUISEUX SERIES
 WHOSE CURVES PASS THROUGH AN INFINITY OF ALGEBRAIC LATTICE POINTS

BY DAVID LEE HILLIKER AND E. G. STRAUS ${ }^{1}$

1. Introduction. Runge [4] proved that certain binary Diophantine equations have only finitely many solutions. Here we give an argument concerning lattice points represented by Puiseux series which proves Runge's Theorem and permits a generalization which shows that there are only finitely many solutions in integers-subject to suitable restrictions-of an algebraic number field. As in the case of Runge's Theorem upper bounds for the absolute value of each solution can be computed, by the methods of the proof.

Let

$$
F(x, y)=\sum_{i=0}^{d_{1}} \sum_{j=0}^{d_{2}} a_{i j} x^{i} y^{j} \in \mathbf{C}[x, y]
$$

be of degree d_{1} and d_{2} in x and y, respectively. Let $\lambda>0$. We define the λ-leading part, $F_{\lambda}(x, y)$, of $F(x, y)$ to be the polynomial consisting of the sum of all terms $a_{i j} x^{i} y^{j}$ of $F(x, y)$ for which $i+\lambda j$ is maximal, for that fixed value of λ. We define the leading part, $\tilde{F}(x, y)$, of $F(x, y)$ to be the sum of all such terms as λ varies.

We say that an irreducible polynomial

$$
F(x, y) \in \mathbf{Z}[x, y]
$$

satisfies Runge's Condition unless there exists a λ so that $\tilde{F}=F_{\lambda}$ is a constant multiple of a power of an irreducible polynomial.

Runge's Theorem can now be conveniently formulated: If $F(x, y)$ satisfies Runge's Condition, then the Diophantine equation $F(x, y)=0$ has only finitely many solutions $(x, y) \in \mathbf{Z}^{2}$.

Let L denote an algebraic number field of degree t. Let the conjugates of $\theta \in L$ be denoted by $\theta^{(1)}=\theta, \theta^{(2)}, \theta^{(3)}, \ldots, \theta^{(t)}$, and let

$$
|\theta|=\max _{1 \leq \tau \leq t}\left|\theta^{(\tau)}\right| .
$$

Denote the ring of algebraic integers in L by \mathcal{O}_{L}. We say that $(x, y) \in \mathcal{O}_{L}^{2}$ is an L-lattice point. We consider certain analytic functions $y=f(x)$, of a complex

[^0]
[^0]: Received by the editors February 3, 1982 and, in revised form, August 13, 1982.
 1980 Mathematics Subject Classification. Primary 14H05; Secondary 10B10, $10 B 15$.
 Key words and phrases. Algebraic function, Diophantine equation, Puiseux series.
 ${ }^{1}$ Work of the second author was supported in part by NSF Grant MCS 79-03162.

