NEW DEFECT RELATIONS FOR MEROMORPHIC FUNCTIONS ON C ${ }^{\boldsymbol{n}}$

BY BERNARD SHIFFMAN

For meromorphic functions f and φ on the complex line \mathbf{C}^{1}, one considers the counting function $N(r, \varphi, f)=\int_{1}^{r} n(t, \varphi, f) t^{-1} d t$, where $n(t, \varphi, f)$ denotes the number of solutions of the equation $f=\varphi$ (counting multiplicities) on the disk $\{|z| \leq t\}$. If $T(r, \varphi)=o(T(r, f)$), one defines the defect $\delta(\varphi, f)=$ $\liminf [1-N(r, \varphi, f) / T(r, f)]$ and observes that $0 \leq \delta(\varphi, f) \leq 1$ as in the case where $\varphi=$ constant. In 1929, R. Nevanlinna [4, p. 77] asked if the defect relation

$$
\begin{equation*}
\sum_{j=1}^{q} \delta\left(\varphi_{j}, f\right) \leq 2 \tag{*}
\end{equation*}
$$

is valid for distinct meromorphic functions φ_{j} with $T\left(r, \varphi_{j}\right)=o(T(r, f))$. The case where the φ_{j} are constant is Nevanlinna's fundamental defect relation [4]. (If $q=3$, then (*) follows immediately from the Nevanlinna defect relation.) In 1939, J. Dufresnoy [3] showed that $\sum \delta\left(\varphi_{j}, f\right) \leq d+2$ if f is transcendental and the φ_{j} are distinct polynomials of degree $\leq d$. In 1964, C.-T. Chuang [2] gave a general Second Main Theorem which yields (*) for the case where f is holomorphic (or more generally when $\delta(\infty, f)=1$) and which generalizes the defect relation of Dufresnoy [3]. However, this question of Nevanlinna remains unanswered today even for polynomial φ_{j}, despite Nevanlinna's assertion [4, p. 77] that (*) "follows easily" for this case. If f is a meromorphic function on \mathbf{C}^{n}, then a special case of a theorem of W. Stoll [7] (see also Vitter [8]) yields (*) for constant φ_{j} as in the classical Nevanlinna theory. (In fact, the results of Chuang [2] generalize easily to \mathbf{C}^{n}.) In this note we announce a new defect relation of the form (*) for meromorphic functions on $\mathbf{C}^{n}, n \geq 2$.

If f and φ are distinct meromorphic functions on \mathbf{C}^{n}, we let $D(\varphi, f)$ denote the divisor on \mathbf{C}^{n} given by the solution (with multiplicities) to the equation $f=$ φ. We write $N(r, \varphi, f)=N(r, D(\varphi, f))$, where $N(r, D)$ denotes the counting function for D as given in [1 or 7]. We easily obtain the First Main Theorem,

$$
N(r, \varphi, f)+m(r, \varphi, f)=T(r, f)+T(r, \varphi)+c,
$$

where the proximity term $m(r, \varphi, f) \geq 0$. Our main result is the following
SECOND MAIN TheORem. Let $f, \varphi_{1}, \ldots, \varphi_{q}$ be distinct meromorphic functions on $\mathbf{C}^{n}(q \geq n-1)$ such that
(i) $\operatorname{rank}\left(\varphi_{1}, \ldots, \varphi_{q}\right)=n-1$,

