NEW DEFECT RELATIONS FOR MEROMORPHIC FUNCTIONS ON Cⁿ

BY BERNARD SHIFFMAN

For meromorphic functions f and φ on the complex line \mathbb{C}^1 , one considers the counting function $N(r,\varphi,f) = \int_1^r n(t,\varphi,f)t^{-1}dt$, where $n(t,\varphi,f)$ denotes the number of solutions of the equation $f = \varphi$ (counting multiplicities) on the disk $\{|z| \leq t\}$. If $T(r,\varphi) = o(T(r,f))$, one defines the defect $\delta(\varphi,f) =$ $\liminf[1 - N(r,\varphi,f)/T(r,f)]$ and observes that $0 \leq \delta(\varphi,f) \leq 1$ as in the case where φ =constant. In 1929, R. Nevanlinna [4, p. 77] asked if the defect relation

(*)
$$\sum_{j=1}^{q} \delta(\varphi_j, f) \le 2$$

is valid for distinct meromorphic functions φ_j with $T(r,\varphi_j) = o(T(r, f))$. The case where the φ_j are constant is Nevanlinna's fundamental defect relation [4]. (If q = 3, then (*) follows immediately from the Nevanlinna defect relation.) In 1939, J. Dufresnoy [3] showed that $\sum \delta(\varphi_j, f) \leq d+2$ if f is transcendental and the φ_j are distinct polynomials of degrees $\leq d$. In 1964, C.-T. Chuang [2] gave a general Second Main Theorem which yields (*) for the case where f is holomorphic (or more generally when $\delta(\infty, f) = 1$) and which generalizes the defect relation of Dufresnoy [3]. However, this question of Nevanlinna remains unanswered today even for polynomial φ_j , despite Nevanlinna's assertion [4, p. 77] that (*) "follows easily" for this case. If f is a meromorphic function on \mathbb{C}^n , then a special case of a theorem of W. Stoll [7] (see also Vitter [8]) yields (*) for constant φ_j as in the classical Nevanlinna theory. (In fact, the results of Chuang [2] generalize easily to \mathbb{C}^n .) In this note we announce a new defect relation of the form (*) for meromorphic functions on \mathbb{C}^n , $n \geq 2$.

If f and φ are distinct meromorphic functions on \mathbb{C}^n , we let $D(\varphi, f)$ denote the divisor on \mathbb{C}^n given by the solution (with multiplicities) to the equation $f = \varphi$. We write $N(r,\varphi,f) = N(r,D(\varphi,f))$, where N(r,D) denotes the counting function for D as given in [1 or 7]. We easily obtain the *First Main Theorem*,

$$N(r,\varphi,f) + m(r,\varphi,f) = T(r,f) + T(r,\varphi) + c,$$

where the proximity term $m(r, \varphi, f) \ge 0$. Our main result is the following

SECOND MAIN THEOREM. Let $f, \varphi_1, \ldots, \varphi_q$ be distinct meromorphic functions on \mathbb{C}^n $(q \ge n-1)$ such that

(i) $\operatorname{rank}(\varphi_1,\ldots,\varphi_q)=n-1$,

1980 Mathematics Subject Classification. Primary 32A22.

Received by the editors April 2, 1982.

^{© 1982} American Mathematical Society 0273-0979/82/0000-0800/\$01.75