THE ERGODIC THEORETICAL PROOF OF SZEMERÉDI'S THEOREM

BY H. FURSTENBERG, Y. KATZNELSON AND D. ORNSTEIN ${ }^{1}$

Introduction. In 1975, E. Szemeredi proved the following theorem conjectured some forty years earlier by Erdös and Turan:

Theorem I. Let $\Lambda \subset Z$ be a subset of the integers of positive upper density, then Λ contains arbitrarily long arithmetic progressions.

Partial results were obtained previously by K. F. Roth (1952) who established the existence of arithmetic progressions of length three in subsets of Z of positive upper density, and by E. Szemerédi (1969) who proved the existence of progressions of length four.

In 1976 Furstenberg noticed that the statement of Theorem I is equivalent to a statement about "multiple recurrence" of measure-preserving transformations, namely

Theorem II. Let (X, \mathfrak{B}, μ) be a probability measure space, let T be an invertible, measure-preserving transformation on (X, \mathscr{B}, μ), and let $A \in \mathscr{B}$ be a set of positive measure. Then for any positive integer k, there exists a subset $B \subset A$ with $\mu(B)>0$ and an integer $n \geqslant 1$ with

$$
T^{n} B \subset A, T^{2 n} B \subset A, \ldots, T^{(k-1) n} B \subset A
$$

or what amounts to the same,

$$
\mu\left(\bigcap_{j=0}^{k-1} T^{-j n} A\right)>0
$$

It turned out to be possible to give an ergodic theoretic proof of Theorem II, thereby providing a new proof of Szemerédi's theorem.

Various elements of Furstenberg's original proof were simplified by Katznelson and Ornstein, and making use of this it became possible to prove a generalization of Theorem II with T, T^{2}, \ldots, T^{k} replaced by any commuting set of measure-preserving transformations (cf. [FK]). This result leads to an analogue of Szemerédi's theorem for Z^{r} and, in fact, this proof proceeding by way of ergodic theory is the only one available so far for this analogue.

[^0]
[^0]: Received by the editors March 11, 1982.
 1980 Mathematics Subject Classification. Primary 05, 10, 28, 60.
 ${ }^{1}$ Partial support of the second and third authors was given by National Science Foundation grant MCS81-07092.

