SCHRÖDINGER SEMIGROUPS

BY BARRY SIMON

ABSTRACT. Let $H = -\frac{1}{2}\Delta + V$ be a general Schrödinger operator on \mathbb{R}^{ν} ($\nu \ge 1$), where Δ is the Laplace differential operator and V is a potential function on which we assume minimal hypotheses of growth and regularity, and in particular allow V which are unbounded below. We give a general survey of the properties of e^{-tH} , $t \ge 0$, and related mappings given in terms of solutions of initial value problems for the differential equation du/dt +Hu = 0. Among the subjects treated are L^p -properties of these maps, existence of continuous integral kernels for them, and regularity properties of eigenfunctions, including Harnack's inequality.

CONTENTS

- A. Introduction
 - A1. Overview
 - A2. The class K_{μ}
 - A3. Literature on larger classes
- B. L^{p} -properties
 - B1. L^{p} -smoothing of semigroups
 - **B2.** Sobolev estimates
 - **B3.** Continuity and derivative estimates
 - **B4.** Localization
 - B5. Growth of L^p -semigroup norms as $t \to \infty$
 - B6. Weighted L^2 -spaces
 - B7. Integral kernels: General potentials
 - B8. Integral kernels: Some special operators for some special potentials
 - **B9.** Trace ideal properties
 - **B10.** Continuity in V
 - B11. Hypercontractive semigroups and all that
 - B12. Some remarks on the case when H is unbounded below
 - B13. The magnetic case
- C. Eigenfunctions
 - C1. Harnack's inequality and subsolution estimates
 - C2. Local estimates on $\nabla \varphi$
 - C3. Decay of eigenfunctions
 - C4. Eigenfunctions and spectrum
 - C5. Eigenfunction expansions

© 1982 American Mathematical Society 0273-0979/82/0000-0350/\$21.00

Received by the editors March 4, 1982.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 81-02, 35-02; Secondary 47F05, 35P05.