author does not make far-ranging conjectures, and does not philosophize. The book is lean and beautiful.

References

1. B. J. Birch [1957], Homogeneous forms of odd degree in a large number of variables, Mathematika 4, 102-105.
2. H. Davenport [1962], Analytic methods for diophantine equations and diophantine inequalities, Univ. of Michigan, Fall semester 1962, Campus Publishers.
3. H. Davenport [1963], Cubic forms in 16 variables, Proc. Roy. Soc. Ser. A 272, 285-303.
4. H. Davenport and H. Heilbronn [1946], On indefinite quadratic forms in five variables, J. London Math. Soc. (2) 21, 185-193.
5. H. Davenport and D. J. Lewis [1969], Simultaneous equations of additive type, Philos. Trans. Roy. Soc. London Ser. A 264, 557-595.
6. M. J. Greenberg [1969], Lectures on forms in many variables, Benjamin, New York and Amsterdam.
7. G. H. Hardy and J. E. Littlewood [1919], A new solution of Waring's problem, Quart. J. Math. 48, 272-293. (See also Hardy's collected papers, vol. I, Clarendon Press, Oxford, 1966, pp. 382-403.)
8. G. H. Hardy and S. Ramanujan [1918], Asymptotic formulae in combinatory analysis, Proc. London Math. Soc. (2) 17, 75-115.
9. D. Hilbert [1909], Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl n-ter Potenzen (Waringsches Problem), Göttinger Nachrichten, 17-36.
10. C. Hooley [1981], On a new approach to various problems of Waring's type, Recent Progress in Analytic Number Theory (Sympos., Durham, July 1979), Academic Press, New York, pp. 127-191.
11. L. K. Hua [1938], On Waring's problem, Quart. J. Math. 9, 199-202.
12. J. I. Igusa [1978], Lectures on forms of higher degree, Tata Inst. Fundamental Research, Bombay.
13. Yu. V. Linnik [1960], All large numbers are sums of a prime and two squares (A problem of Hardy and Littlewood). I, Mat. Sb. (N.S.) 52 (94), 661-700. (Russian)
14. W. M. Schmidt [1980], Diophantine inequalities for forms of odd degree, Adv. in Math. 38, 128-151.
15. \qquad [to appear], On cubic polynomials. II-IV; Monatsh. Math. Part I 93 (1982), 63-74.
16. I. M. Vinogradov [1928], Sur le théorème de Waring, C. R. Acad. Sci. USSR, 393-400.
17. \qquad [1937], Representation of an odd number as a sum of three primes, C. R. Acad. Sci. USSR 15, 6-7.
18. \qquad [1947], The method of trigonometrical sums in the theory of numbers, "Nauka" Interscience, New York.
19. \qquad [1971], The method of trigonometrical sums in the theory of numbers, Moscow. (Russian)
20. H. Weyl [1916], Über die Gleichverteilung von Zahlen mod Eins, Math. Ann. 77, 313-352.

Wolfgang M. Schmidt
BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 7, Number 2, September 1982
© 1982 American Mathematical Society
0273-0979/82/0000-0755/\$01.50
Group theoretic methods in bifurcation theory, by D. H. Sattinger, Lecture Notes in Math., vol. 762, Springer-Verlag, Berlin, Heidelberg, 1979, 241 pp., $\$ 14.00$.

Analysis of nonlinear problems has always been a rich area in terms of mathematical difficulties and interesting problems. For the last two decades there has been a flurry of activity related to nonlinear eigenvalue problems and

