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Wiener integral expansion mentioned above. This conjecture was settled af­
firmatively only in 1980 [1]. However, this point can be avoided by making a 
Girsanov transformation after which the observation process Z, is a brownian 
motion, and by using a stopping time argument. 

There have been a number of interesting recent developments in nonlinear 
filtering theory, which are beyond the scope of Kallianpur's book. One 
direction concerns the theory of "robust" or "pathwise" solutions to the 
filtering equations [4]. The objective is to obtain st for all possible observation 
trajectories Z., not just for a set of probability 1, in such a way that st depends 
continuously on Z. in the uniform norm. Another direction of recent research 
is to explain the structure of the optimal filter by studying a certain Lie algebra 
associated with it [3]. A related problem is to find finite-dimensional nonlinear 
filters, in other words, filters whose evolution in time is described by a finite 
number of stochastic differential equations [2]. 
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Singular perturbations, in 1982, is a maturing mathematical subject with a 
fairly long history and a strong promise for continued important applications 
throughout science. Though the basic intuitive ideas involving local patching of 


