EXOTIC CLASSES FOR MEASURED FOLIATIONS BY STEVEN HURDER

A measured foliation (F, μ) is a C^2 -foliation F on a smooth manifold Mand a transverse invariant measure μ for F [14]. Inspired by the foliation index theorem of Connes [4, 5], we study the result of integrating *normal data* to Fover the leaf space M/F. This produces new secondary-type exotic classes for measured foliations [7]. These classes have applications to SL_q -foliations, to the study of groups of volume-preserving diffeomorphisms, and also are useful for relating the geometry of F to the values of the usual secondary classes [8, 9].

THEOREM 1. Let (F, μ) be a measured foliation of codimension q on M. If either M is closed and orientable, or μ is absolutely continuous (so it is represented by a closed form $d\mu$), then there is a well-defined characteristic map

$$\chi_{\mu}: H^*(\mathfrak{gl}_a, O_a) \longrightarrow H^{*+q}(M).$$

We call the image of χ_{μ} the μ -classes of (F, μ) .

For M^m compact and $y_I \in H^n(gl_q, O_q)$, the class $\chi_{\mu}(y_I)$ is defined as the geometric current in $H_{m-n-q}(M)$ obtained by integrating over the leaf space of F, via μ , the leaf classes corresponding to y_I . Duality then produces the invariant in $H^{n+q}(M)$. If $d\mu$ is a closed form representing μ , then a cocycle representing $\chi_{\mu}(y_I)$ is $\Delta(y_I) \cdot d\mu$, where Δ : $WO_q \rightarrow A'(M)$ is the secondary map for F, [2, 10]. Complete details and properties of χ_{μ} are described in [7].

The values of the μ -classes depend on the measure μ and the dynamical behavior of F in a neighborhood of the support of μ . It is conjectured that subexponential growth of the leaves of F implies the μ -classes vanish; this can be shown in some cases. Examples can be constructed for which all of the μ -classes are nontrivial.

The canonical measure associated to an SL_q -foliation (F, ω) -where ω is a transverse invariant volume form-defines a characteristic map χ_{ω} : $H^*(sl_q, SO_q) \rightarrow H^{*+q}(M)$, and these come from universal classes for the Haefliger classifying space $B\Gamma_{SL_q}$. There are additional μ -classes for measured foliations with framed normal bundles, and corresponding universal classes for $B\overline{\Gamma}_{SL_q}$, the homotopy fiber of $B\Gamma_{SL_q} \rightarrow BSL_q$.

Received by the editors February 23, 1982.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 57R30; Secondary 57R20, 28D15.