THE RADICAL IN A FINITELY GENERATED P.I. ALGEBRA

BY AMIRAM BRAUN

Let R be an associative ring over a commutative ring $\Lambda, p\left\{X_{1}, \ldots, X_{e}\right\}$ a polynomial on the free noncommuting variables X_{1}, \ldots, X_{e}, with coefficients in Λ where one of its coefficient is +1 . We say that R is a P.I. (polynomial identity) ring satisfying $p\left\{X_{1}, \ldots, X_{e}\right\}$ if $p\left(r_{1}, \ldots, r_{e}\right)=0$ for all r_{1}, \ldots, r_{e} in R.

We have the following
Theorem A. Let $R=\Lambda\left\{x_{1}, \ldots, x_{k}\right\}$ be a p.i. ring, where Λ is a noetherian subring of the center $Z(R)$ of R. Then, $N(R)$, the nil radical of R, is nilpotent.

Recall that $N(R)=\bigcap_{p} P$ where the intersection runs on all prime ideals of R.

We obtain, as a corollary, by taking Λ to be a field, the following theorem, answering affirmatively the open problem which is posed in [$\mathrm{Pr}, \mathrm{p} .186$].

Theorem B. Let R be a finitely generated P.I. algebra over a field F. Then, $J(R)$, the Jacobson radical of R, is nilpotent.

This result, in turn, has the following important consequence.
Theorem C. Let $R=F\left\{x_{1}, \ldots, x_{k}\right\}$ be a finitely generated P.I. algebra over the field F. Then, R is a subquotient of some $n \times n$ matrix ring $M_{n}(K)$ where K is a commutative F-algebra. Equivalently, there exists an n such that R is a homomorphic image of $G(n, t)$ the ring of $t, n \times n$ generic matrices.

Kemer, in [K], announced a proof of Theorem B with the additional assumption that $\operatorname{char}(F)=0$. His proof relies on a result of Razmyslov [Ra, Theorem 3] and on certain arguments related to the connection between P.I. ring theory and the theory of representation of the symmetric group S_{n} over F, char $F=0$. Both results rely heavily on the assumption that char $F=0$, so they do not seem to generalize directly to arbitrary F.

The previously best known results concerning Theorem A are in [Ra, Theorems 1, 3, Sc, Theorem 2].

The proof of Theorem C is a straightforward application of Theorem B and a theorem of J. Lewin [Le, Theorem 10].

[^0]
[^0]: Received by the editors January 13, 1982.
 1980 Mathematics Subject Classification. Primary 16A38.

