ORTHOGONAL POLYNOMIALS ASSOCIATED WITH INVARIANT MEASURES ON JULIA SETS

BY M. F. BARNSLEY ${ }^{1}$, J. S. GERONIMO ${ }^{2}$ AND A. N. HARRINGTON

I. Introduction. Let \mathbf{C} be the complex plane and $T: \mathbf{C} \longrightarrow \mathbf{C}$ be a nonlinear polynomial of the form $T(z)=z^{n}+k_{1} z^{n-1}+\cdots+k_{n}$. Consider the sequence $\left\{T^{n}(z)\right\}, n=1,2, \ldots$, where $T^{0}(z)=z$ and $T^{n}(z)=T \circ T^{n-1}(z)$. The general theory of sequences of this form has been developed by Fatou $[5,6]$, Julia [8] and Brolin [4]. In their research a fundamental role is played by the Julia set B, which is the set of points in C where $\left\{T^{n}(z)\right\}$ is not normal.

Fatou and Julia established the possible structures B can have and showed that these depend in a complicated way on the coefficients of $T(z)$. Among other things they demonstrated that B may be the unit circle, a straight line, a generalized Cantor set, or a set containing an infinite number of Jordan curves. However, in all cases, B is compact and $T^{-1}(B)=B$.

In 1965 Brolin established some electrical properties of the set B. He showed that the logarithmic capacity of B is positive and that there exists an equilibrium charge distribution u. He also proved that, for $T: B \rightarrow B, u$ is invariant and the system (B, u, T) is strongly mixing. It is the purpose of this note to develop more fully the properties of the equilibrium measure on B and to investigate the monic polynomials orthogonal with respect to this measure.
II. Results. We begin with the following

Definition 1. u is a balanced T-invariant measure on B if u is a probability measure supported on B such that for any complete assignment of branches of $T^{-1}, T_{j}^{-1}, j=1,2, \ldots, n, u\left(T_{j}^{-1}(S)\right)=u(S) / n$ for each Borel set S.

Remark 1. One can show [2] that there is only one balanced T-invariant measure on B and that the measure constructed by Brolin is balanced.

Received by the editors January 28, 1982.
1980 Mathematics Subject Classification. Primary 42A52.
${ }^{1}$ Partially supported by N.S.F. Grant MCS-8104862.
${ }^{2}$ Partially supported by N.S.F. Grant MCS-8002731.

